Vertigo — Causes, Symptoms and Treatment

This article provides an overview of vertigo in clinical practice - how it presents, how to differentiate it from dizziness, common differentials, their pathophysiology, treatments and complications. It also introduces the reader to the Dix-Hallpike manoeuvre used in vertigo diagnosis and the Epley manoeuvre used in the treatment of benign paroxysmal positional vertigo (BPPV).

Definition and Epidemiology of Vertigo

Vertigo is defined as an illusion of movement, often rotatory, of the patient's surroundings.

It is important to note that vertigo is **not light-headedness**, which can be caused by a multitude of reasons including **anxiety and orthostatic hypotension**.

Vertigo affects approximately **4.9% of the population each year**. Of this 4.9%, 1 year prevalence is around 1.6% for **benign paroxysmal positional vertigo** and 0.89% for **migraine associated vertigo**. 1 year prevalence for **Meniere's disease** is 0.51%.

Differential Diagnosis of Vertigo

For the patient presenting with dizziness:

- Benign positional paroxysmal vertigo
Meniere’s disease
Vestibular neuritis
Labyrinthitis
Vestibular migraine
Syncope
Orthostatic hypotension
Diabetes mellitus
Hypothyroidism
Rheumatoid arthritis
Alcohol

Once true vertigo is established, consider:

- Peripheral causes:
  - Benign paroxysmal positional vertigo
  - Labyrinthitis (vestibular neuritis)
  - Herpes simplex virus
  - Meniere’s disease
- Central causes:
  - Vestibular migraine
  - Post-traumatic vertigo
  - Neoplasia (some)
  - Stroke
- Mixed causes of vertigo:
  - Acoustic neuroma

**Diagnosis of Vertigo**

A full history and examination should be taken. Many patients initially present with generic dizziness. A patient with vertigo will report feeling unsteady on their feet, as if they are constantly moving (vertigo does not always present as rotatory). Vertigo is always worse with movement.

If the patient describes episodes of vertigo which last seconds to a few minutes, the most likely cause is benign paroxysmal positional vertigo (BPPV). When the patient describes symptoms lasting minutes to hours, this is suggestive of Meniere’s disease, while hours to days is suggestive of a central or labyrinthine pathology.

Diagnosis is usually made by physical examination via the Hallpike maneuver. For this test, the patient is supine with his/her head slightly lower than his/her body. Nystagmus can be noted when turning the head towards the affected ear. This is a positive Hallpike maneuver and indicates diagnosis of benign paroxysmal positional vertigo (BPPV).
**Meniere’s disease** is associated with **recurrent episodes** of vertigo lasting from around half an hour to a few hours. Ask about **hearing loss** as it is commonly associated with sensorineural hearing loss. The patient may also suffer from **tinnitus**. Typically, Meniere’s presents in **middle aged adults**. The key to diagnosis can often be the variable amount of hearing loss (associated with the episodes of vertigo).

It is important to differentiate between peripheral and central vertigo. **Peripheral vertigo** will be associated with a number of other symptoms like **hearing abnormalities**, **tinnitus** or **ear pain**.

**Central causes** of vertigo like **ischaemia** and **migraine** are relatively rare. Migraine associated vertigo will inherently present with a history of migraines (often the vertigo comes on with the migraine).

**Vertebrobasilar ischemia (stroke)** is relatively rare and will present with other symptoms of **brainstem** involvement. In rare cases, **neoplasias** and **strokes** can cause **brainstem disease** leading to vertigo.

In some cases, **benign tumours of the schwann cells of cranial nerve VII** can cause vertigo. Patients may also present with **deafness**. This can be idiopathic or as a result of genetic disorders like **neurofibromatosis type 2**. Diagnosis is typically confirmed with MRI.

**Pathophysiology of Vertigo**

The **vestibular system** is responsible for the sensation of motion, both in linear and angular directions. The **semicircular canals and otoliths** are responsible for this process. Vertigo is a deficit in either the sensation of motion (i.e. an issue with the semicircular canals) or a centralized issue with the processing of information from the semicircular canals.

**Pathophysiology of benign paroxysmal positional vertigo (BPPV)**

BPPV is due to **loose otoliths in the semicircular canals**. These are usually found
within the posterior canal. They are disturbed by head movement and cause the brief vertigo sensations experienced in BPPV.

BPPV is a common condition with a good prognosis. It remits without treatment in around 30% of patients. And almost all patients do not suffer from the condition at 6 months post onset.

Pathophysiology of labyrinthitis

Labyrinthitis is caused by inflammation of the labyrinthine and its associated vertigo has a rapid onset. Infection of the membranous labyrinth can result in intraluminal fibrosis and ossification. Infections can spread from the middle ear (otitis media) to the inner ear and internal auditory canal and cause sensations of vertigo.

Pathophysiology of Meniere’s disease

Meniere’s disease is caused by excess endolymphatic fluid in the inner ear. This can either be caused by overproduction or underabsorption.

Therapy of Vertigo

Therapy depends on the underlying cause of vertigo.

Treatment of benign paroxysmal positional vertigo

Treatment is typically provided by repositioning maneuvers (Epley’s). Epley’s manoeuvre involves the positioning the head in different positions. Lying supine, the patient’s head is tilted to the left side until nystagmus and dizziness has passed. The patient’s head is then tilted in the other direction, again allowing nystagmus and dizziness to pass. Epley’s is effective in around 70% of patients with BPPV.

Treatment of labyrinthitis

Many things can inherently cause labyrinthitis including viral diseases like HIV and HSV. In most cases, the underlying disease should be treated, as treatment for the
Vertigo will be purely symptomatic in nature. In viral cases, benzodiazepines have been found to successfully control vertigo. Anti-emetics can be used for nausea and vomiting.

In patients with bacterial infections that have lead to labyrinthitis, topical antibiotics are usually prescribed except when meningitis is suspected, in which case treatment will be IV antibiotics.

In patients with autoimmune associated labyrinthitis, corticosteroids can be effective.

### Treatment of Meniere’s disease

Management of symptoms is the goal for therapy in Meniere’s disease as there is currently no cure. Due to the pathophysiology of Meniere’s disease – where endolymphatic pressure is varyingly high – treatment has tended to attempt to reduce this pressure.

There is some debate as to whether this is an effective treatment option. In practice, 80% of patients find that vertigo is controlled by dietary changes and diuretics. Benzodiazepines can be helpful in some patients for the control of vertigo.

### Treatment for acoustic neuromas

Treatment depends on the individual patient. Radiotherapy or surgical resection can be opted for if the tumour is large (<3cm) and growing. If it is stable and under 3 cm it may be wise to manage conservatively.

### Complications of Vertigo

With many diseases causing vertigo, the common complication is falls after feeling unsteady leading to trauma, especially in elderly patients.

### Complications associated with BPPV

During Epley’s maneuver, a high proportion of patients will feel vertigo which may be distressing. Other complications include accidents during work or driving if patients suffer an episode of BPPV.

### Complications associated with acoustic neuroma treatment

Both radiotherapy and surgery are associated with a number of risks. Risk of surgery include hearing loss, facial weakness and facial numbness. Facial nerve palsy, hearing loss and secondary malignancy can occur following radiotherapy.

### References

Brown JS. **A ten year statistical follow-up of 245 consecutive cases of endolymphatic shunt and decompression with 328 consecutive cases of labyrinthectomy.** Laryngoscope. 1983;93:1419-1424.


Nadol JB Jr, Hsu WC. **Histopathologic correlation of spiral ganglion cell count and new bone formation in the cochlea following meningogenic labyrinthitis and deafness.** Ann Otol Rhinol Laryngol. 1991;100:712-716


**Legal Note:** Unless otherwise stated, all rights reserved by Lecturio GmbH. For further legal regulations see our legal information page.

Notes