Achieve Mastery of Medical Concepts

Study for medical school and boards with Lecturio

Hyperprolactinemia

Hyperprolactinemia is defined as a condition of elevated levels of prolactin Prolactin A lactogenic hormone secreted by the adenohypophysis. It is a polypeptide of approximately 23 kd. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Breasts: Anatomy (PRL) hormone in the blood. The PRL hormone is secreted by the anterior pituitary gland Pituitary gland The pituitary gland, also known as the hypophysis, is considered the "master endocrine gland" because it releases hormones that regulate the activity of multiple major endocrine organs in the body. The gland sits on the sella turcica, just below the hypothalamus, which is the primary regulator of the pituitary gland. Pituitary Gland: Anatomy and is responsible for breast development and lactation Lactation The processes of milk secretion by the maternal mammary glands after parturition. The proliferation of the mammary glandular tissue, milk synthesis, and milk expulsion or let down are regulated by the interactions of several hormones including estradiol; progesterone; prolactin; and oxytocin. Breastfeeding. Many factors contribute to the development of hyperprolactinemia. The most common cause is PRL-secreting pituitary adenomas Pituitary adenomas Pituitary adenomas are tumors that develop within the anterior lobe of the pituitary gland. Non-functioning or non-secretory adenomas do not secrete hormones but can compress surrounding pituitary tissue, leading to hypopituitarism. Secretory adenomas secrete various hormones depending on the cell type from which they evolved, leading to hyperpituitarism. Pituitary Adenomas (prolactinomas). Diagnosis is achieved through hormonal testing to rule out other endocrine conditions and confirmatory imaging tests. Dopamine Dopamine One of the catecholamine neurotransmitters in the brain. It is derived from tyrosine and is the precursor to norepinephrine and epinephrine. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. Receptors and Neurotransmitters of the CNS agonists are the 1st-line drugs for treatment. Refractory cases require surgery and possibly radiation Radiation Emission or propagation of acoustic waves (sound), electromagnetic energy waves (such as light; radio waves; gamma rays; or x-rays), or a stream of subatomic particles (such as electrons; neutrons; protons; or alpha particles). Osteosarcoma therapy.

Last updated: 8 Jan, 2021

Editorial responsibility: Stanley Oiseth, Lindsay Jones, Evelin Maza

Overview

Definition

Hyperprolactinemia means abnormally high levels of prolactin Prolactin A lactogenic hormone secreted by the adenohypophysis. It is a polypeptide of approximately 23 kd. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Breasts: Anatomy (PRL) in the blood.

Normal PRL levels (may vary according to the lab):

  • < 23.5–25 ng/mL or μg/L for non-pregnant women
  • 80–400 ng/mL or μg/L for pregnant women
  • < 20–21.5 ng/mL or μg/L for men

Epidemiology

  • Occurs in < 1% of the general population 
  • The most common form of pituitary Pituitary A small, unpaired gland situated in the sella turcica. It is connected to the hypothalamus by a short stalk which is called the infundibulum. Hormones: Overview and Types hormone hypersecretion (hyperpituitarism) in both men and women
  • Slightly more common in females

Etiology

  • Physiologic causes:
    • Pregnancy Pregnancy The status during which female mammals carry their developing young (embryos or fetuses) in utero before birth, beginning from fertilization to birth. Pregnancy: Diagnosis, Physiology, and Care (most common):
      • During pregnancy Pregnancy The status during which female mammals carry their developing young (embryos or fetuses) in utero before birth, beginning from fertilization to birth. Pregnancy: Diagnosis, Physiology, and Care, PRL levels rise but are regulated by estrogen Estrogen Compounds that interact with estrogen receptors in target tissues to bring about the effects similar to those of estradiol. Estrogens stimulate the female reproductive organs, and the development of secondary female sex characteristics. Estrogenic chemicals include natural, synthetic, steroidal, or non-steroidal compounds. Ovaries: Anatomy and progesterone Progesterone The major progestational steroid that is secreted primarily by the corpus luteum and the placenta. Progesterone acts on the uterus, the mammary glands and the brain. It is required in embryo implantation; pregnancy maintenance, and the development of mammary tissue for milk production. Progesterone, converted from pregnenolone, also serves as an intermediate in the biosynthesis of gonadal steroid hormones and adrenal corticosteroids. Gonadal Hormones.
      • After the birth, PRL levels will decrease without nipple Nipple The conic organs which usually give outlet to milk from the mammary glands. Examination of the Breast stimulation.
    • Nipple Nipple The conic organs which usually give outlet to milk from the mammary glands. Examination of the Breast stimulation (via breastfeeding Breastfeeding Breastfeeding is often the primary source of nutrition for the newborn. During pregnancy, hormonal stimulation causes the number and size of mammary glands in the breast to significantly increase. After delivery, prolactin stimulates milk production, while oxytocin stimulates milk expulsion through the lactiferous ducts, where it is sucked out through the nipple by the infant. Breastfeeding/suckling)
    • Stress 
    • Sleep Sleep A readily reversible suspension of sensorimotor interaction with the environment, usually associated with recumbency and immobility. Physiology of Sleep (levels return to normal within an hour of awakening)
  • Pathologic causes:
    • Prolactinomas: 
      • PRL-secreting pituitary adenomas Pituitary adenomas Pituitary adenomas are tumors that develop within the anterior lobe of the pituitary gland. Non-functioning or non-secretory adenomas do not secrete hormones but can compress surrounding pituitary tissue, leading to hypopituitarism. Secretory adenomas secrete various hormones depending on the cell type from which they evolved, leading to hyperpituitarism. Pituitary Adenomas caused by a monoclonal expansion of the lactotrophs
      • Approximately 50% of cases are due to the overexpression of pituitary Pituitary A small, unpaired gland situated in the sella turcica. It is connected to the hypothalamus by a short stalk which is called the infundibulum. Hormones: Overview and Types tumor Tumor Inflammation transforming gene Gene A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Basic Terms of Genetics (PTTG1) and MEN1 MEN1 A form of multiple endocrine neoplasia that is characterized by the combined occurrence of tumors in the parathyroid glands, the pituitary gland, and the pancreatic islets. The resulting clinical signs include hyperparathyroidism; hypercalcemia; hyperprolactinemia; cushing disease; gastrinoma; and zollinger-ellison syndrome. This disease is due to loss-of-function of the men1 gene, a tumor suppressor gene on chromosome 11 (locus: 11q13). Multiple Endocrine Neoplasia syndrome.
      • Cause approximately 50% of non-pregnant cases
    • Primary hypothyroidism Primary Hypothyroidism Hypothyroidism: Low levels of thyroid Thyroid The thyroid gland is one of the largest endocrine glands in the human body. The thyroid gland is a highly vascular, brownish-red gland located in the visceral compartment of the anterior region of the neck. Thyroid Gland: Anatomy hormones Hormones Hormones are messenger molecules that are synthesized in one part of the body and move through the bloodstream to exert specific regulatory effects on another part of the body. Hormones play critical roles in coordinating cellular activities throughout the body in response to the constant changes in both the internal and external environments. Hormones: Overview and Types cause a compensatory increase in thyrotropin-releasing hormone Thyrotropin-releasing hormone A tripeptide that stimulates the release of thyrotropin and prolactin. It is synthesized by the neurons in the paraventricular nucleus of the hypothalamus. After being released into the pituitary portal circulation, TRH stimulates the release of TSH and PRL from the anterior pituitary gland. Hypothalamic and Pituitary Hormones (TRH), a PRL‑releasing hormone.
    • Pharmacologic causes:
      • Any drug that inhibits dopamine Dopamine One of the catecholamine neurotransmitters in the brain. It is derived from tyrosine and is the precursor to norepinephrine and epinephrine. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. Receptors and Neurotransmitters of the CNS secretion Secretion Coagulation Studies or blocks dopamine Dopamine One of the catecholamine neurotransmitters in the brain. It is derived from tyrosine and is the precursor to norepinephrine and epinephrine. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. Receptors and Neurotransmitters of the CNS receptors Receptors Receptors are proteins located either on the surface of or within a cell that can bind to signaling molecules known as ligands (e.g., hormones) and cause some type of response within the cell. Receptors, because dopamine Dopamine One of the catecholamine neurotransmitters in the brain. It is derived from tyrosine and is the precursor to norepinephrine and epinephrine. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. Receptors and Neurotransmitters of the CNS inhibits PRL secretion Secretion Coagulation Studies
      • Most commonly, antidepressants and antipsychotics
    • Disorders of the hypothalamus Hypothalamus The hypothalamus is a collection of various nuclei within the diencephalon in the center of the brain. The hypothalamus plays a vital role in endocrine regulation as the primary regulator of the pituitary gland, and it is the major point of integration between the central nervous and endocrine systems. Hypothalamus or hypothalamic- pituitary Pituitary A small, unpaired gland situated in the sella turcica. It is connected to the hypothalamus by a short stalk which is called the infundibulum. Hormones: Overview and Types region: such as tumors of the hypothalamus Hypothalamus The hypothalamus is a collection of various nuclei within the diencephalon in the center of the brain. The hypothalamus plays a vital role in endocrine regulation as the primary regulator of the pituitary gland, and it is the major point of integration between the central nervous and endocrine systems. Hypothalamus ( craniopharyngioma Craniopharyngioma Craniopharyngiomas are rare squamous epithelial tumors with a solid and/or cystic structure that arise from the remnants of Rathke’s pouch along the pituitary stalk, in the suprasellar region. Craniopharyngiomas are histologically benign but tend to invade surrounding structures; thus, they should be treated as low-grade malignancies. Craniopharyngioma), head trauma Head trauma Head trauma occurs when external forces are directed to the skull and brain structures, resulting in damage to the skull, brain, and intracranial structures. Head injuries can be classified as open (penetrating) or closed (blunt), and primary (from the initial trauma) or secondary (indirect brain injury), and range from mild to severe and life-threatening. Head Trauma, surgery, or non–PRL-secreting pituitary adenomas Pituitary adenomas Pituitary adenomas are tumors that develop within the anterior lobe of the pituitary gland. Non-functioning or non-secretory adenomas do not secrete hormones but can compress surrounding pituitary tissue, leading to hypopituitarism. Secretory adenomas secrete various hormones depending on the cell type from which they evolved, leading to hyperpituitarism. Pituitary Adenomas
    • Chest-wall trauma: invokes the reflex suckling arc
    • Chronic renal failure Renal failure Conditions in which the kidneys perform below the normal level in the ability to remove wastes, concentrate urine, and maintain electrolyte balance; blood pressure; and calcium metabolism. Renal insufficiency can be classified by the degree of kidney damage (as measured by the level of proteinuria) and reduction in glomerular filtration rate. Crush Syndrome:
      • Produces an increase in PRL levels through a decrease of urinary elimination Elimination The initial damage and destruction of tumor cells by innate and adaptive immunity. Completion of the phase means no cancer growth. Cancer Immunotherapy of the hormone
      • The uremic state will also stimulate the release Release Release of a virus from the host cell following virus assembly and maturation. Egress can occur by host cell lysis, exocytosis, or budding through the plasma membrane. Virology of PRL.
Causes of hyperprolactinemia and feedback loop

The causes of hyperprolactinemia in relation to the regulatory feedback loop of prolactin Prolactin A lactogenic hormone secreted by the adenohypophysis. It is a polypeptide of approximately 23 kd. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Breasts: Anatomy hormone secretion Secretion Coagulation Studies

Image by Lecturio.

Pathophysiology

PRL functions and effects

  • Growth and development of mammary glands during pregnancy Pregnancy The status during which female mammals carry their developing young (embryos or fetuses) in utero before birth, beginning from fertilization to birth. Pregnancy: Diagnosis, Physiology, and Care
  • Production of breast milk
  • Lactational amenorrhea Amenorrhea Absence of menstruation. Congenital Malformations of the Female Reproductive System (lack of menstruation Menstruation The periodic shedding of the endometrium and associated menstrual bleeding in the menstrual cycle of humans and primates. Menstruation is due to the decline in circulating progesterone, and occurs at the late luteal phase when luteolysis of the corpus luteum takes place. Menstrual Cycle during breastfeeding Breastfeeding Breastfeeding is often the primary source of nutrition for the newborn. During pregnancy, hormonal stimulation causes the number and size of mammary glands in the breast to significantly increase. After delivery, prolactin stimulates milk production, while oxytocin stimulates milk expulsion through the lactiferous ducts, where it is sucked out through the nipple by the infant. Breastfeeding)
  • A decrease in sexual drive and reproductive function

PRL regulation

  • Secreted by the anterior pituitary gland Pituitary gland The pituitary gland, also known as the hypophysis, is considered the “master endocrine gland” because it releases hormones that regulate the activity of multiple major endocrine organs in the body. The gland sits on the sella turcica, just below the hypothalamus, which is the primary regulator of the pituitary gland. Pituitary Gland: Anatomy (lactotroph cells)
  • Dopamine Dopamine One of the catecholamine neurotransmitters in the brain. It is derived from tyrosine and is the precursor to norepinephrine and epinephrine. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. Receptors and Neurotransmitters of the CNS inhibits PRL secretion Secretion Coagulation Studies.
  • TRH and estrogen Estrogen Compounds that interact with estrogen receptors in target tissues to bring about the effects similar to those of estradiol. Estrogens stimulate the female reproductive organs, and the development of secondary female sex characteristics. Estrogenic chemicals include natural, synthetic, steroidal, or non-steroidal compounds. Ovaries: Anatomy stimulate PRL secretion Secretion Coagulation Studies.
  • Also stimulated by sleep Sleep A readily reversible suspension of sensorimotor interaction with the environment, usually associated with recumbency and immobility. Physiology of Sleep, exercise, pregnancy Pregnancy The status during which female mammals carry their developing young (embryos or fetuses) in utero before birth, beginning from fertilization to birth. Pregnancy: Diagnosis, Physiology, and Care, and stress
  • Increased levels of PRL inhibit gonadotropin-releasing hormone Gonadotropin-releasing hormone A decapeptide that stimulates the synthesis and secretion of both pituitary gonadotropins, luteinizing hormone and follicle stimulating hormone. Gnrh is produced by neurons in the septum preoptic area of the hypothalamus and released into the pituitary portal blood, leading to stimulation of gonadotrophs in the anterior pituitary gland. Puberty (GnRH) → decrease in luteinizing hormone ( LH LH A major gonadotropin secreted by the adenohypophysis. Luteinizing hormone regulates steroid production by the interstitial cells of the testis and the ovary. The preovulatory luteinizing hormone surge in females induces ovulation, and subsequent luteinization of the follicle. Luteinizing hormone consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity. Menstrual Cycle) and follicle-stimulating hormone ( FSH FSH A major gonadotropin secreted by the adenohypophysis. Follicle-stimulating hormone stimulates gametogenesis and the supporting cells such as the ovarian granulosa cells, the testicular sertoli cells, and leydig cells. Fsh consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity. Menstrual Cycle) → decreases estrogen Estrogen Compounds that interact with estrogen receptors in target tissues to bring about the effects similar to those of estradiol. Estrogens stimulate the female reproductive organs, and the development of secondary female sex characteristics. Estrogenic chemicals include natural, synthetic, steroidal, or non-steroidal compounds. Ovaries: Anatomy → cessation of ovulation Ovulation The discharge of an ovum from a rupturing follicle in the ovary. Menstrual Cycle and menstruation Menstruation The periodic shedding of the endometrium and associated menstrual bleeding in the menstrual cycle of humans and primates. Menstruation is due to the decline in circulating progesterone, and occurs at the late luteal phase when luteolysis of the corpus luteum takes place. Menstrual Cycle
Prolactin diagram

The regulatory feedback loop of PRL: Note that TRH has a stimulatory effect on PRL; however, dopamine Dopamine One of the catecholamine neurotransmitters in the brain. It is derived from tyrosine and is the precursor to norepinephrine and epinephrine. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. Receptors and Neurotransmitters of the CNS is the main regulator of PRL secretion Secretion Coagulation Studies.

Image by Lecturio.

Pathophysiology

Excessive and prolonged increase in PRL levels →  suppression Suppression Defense Mechanisms of GnRH → lower levels of LH LH A major gonadotropin secreted by the adenohypophysis. Luteinizing hormone regulates steroid production by the interstitial cells of the testis and the ovary. The preovulatory luteinizing hormone surge in females induces ovulation, and subsequent luteinization of the follicle. Luteinizing hormone consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity. Menstrual Cycle, FSH FSH A major gonadotropin secreted by the adenohypophysis. Follicle-stimulating hormone stimulates gametogenesis and the supporting cells such as the ovarian granulosa cells, the testicular sertoli cells, and leydig cells. Fsh consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity. Menstrual Cycle → chronically low estrogen Estrogen Compounds that interact with estrogen receptors in target tissues to bring about the effects similar to those of estradiol. Estrogens stimulate the female reproductive organs, and the development of secondary female sex characteristics. Estrogenic chemicals include natural, synthetic, steroidal, or non-steroidal compounds. Ovaries: Anatomy and testosterone Testosterone A potent androgenic steroid and major product secreted by the leydig cells of the testis. Its production is stimulated by luteinizing hormone from the pituitary gland. In turn, testosterone exerts feedback control of the pituitary LH and FSH secretion. Depending on the tissues, testosterone can be further converted to dihydrotestosterone or estradiol. Androgens and Antiandrogens → hypogonadotropic hypogonadism Hypogonadism Hypogonadism is a condition characterized by reduced or no sex hormone production by the testes or ovaries. Hypogonadism can result from primary (hypergonadotropic) or secondary (hypogonadotropic) failure. Symptoms include infertility, increased risk of osteoporosis, erectile dysfunction, decreased libido, and regression (or absence) of secondary sexual characteristics. Hypogonadism

Clinical Presentation

  • Varies depending on the degree of increase and cause
  • May be asymptomatic (especially in postmenopausal women)
  • In men and premenopausal women, hyperprolactinemia presents as hypogonadism Hypogonadism Hypogonadism is a condition characterized by reduced or no sex hormone production by the testes or ovaries. Hypogonadism can result from primary (hypergonadotropic) or secondary (hypogonadotropic) failure. Symptoms include infertility, increased risk of osteoporosis, erectile dysfunction, decreased libido, and regression (or absence) of secondary sexual characteristics. Hypogonadism
    • Infertility Infertility Infertility is the inability to conceive in the context of regular intercourse. The most common causes of infertility in women are related to ovulatory dysfunction or tubal obstruction, whereas, in men, abnormal sperm is a common cause. Infertility due to the cessation of ovulation Ovulation The discharge of an ovum from a rupturing follicle in the ovary. Menstrual Cycle
    • Amenorrhea Amenorrhea Absence of menstruation. Congenital Malformations of the Female Reproductive System (lack of menstruation Menstruation The periodic shedding of the endometrium and associated menstrual bleeding in the menstrual cycle of humans and primates. Menstruation is due to the decline in circulating progesterone, and occurs at the late luteal phase when luteolysis of the corpus luteum takes place. Menstrual Cycle) or irregular menstrual bleeding
    • Galactorrhea (discharge of milk from nipples in men or non- breastfeeding Breastfeeding Breastfeeding is often the primary source of nutrition for the newborn. During pregnancy, hormonal stimulation causes the number and size of mammary glands in the breast to significantly increase. After delivery, prolactin stimulates milk production, while oxytocin stimulates milk expulsion through the lactiferous ducts, where it is sucked out through the nipple by the infant. Breastfeeding women)  
    • Decrease in libido Decrease in libido Male Sexual Dysfunction
    • Osteoporosis Osteoporosis Osteoporosis refers to a decrease in bone mass and density leading to an increased number of fractures. There are 2 forms of osteoporosis: primary, which is commonly postmenopausal or senile; and secondary, which is a manifestation of immobilization, underlying medical disorders, or long-term use of certain medications. Osteoporosis
    • Erectile dysfunction Erectile Dysfunction Erectile dysfunction (ED) is defined as the inability to achieve or maintain a penile erection, resulting in difficulty to perform penetrative sexual intercourse. Local penile factors and systemic diseases, including diabetes, cardiac disease, and neurological disorders, can cause ED. Erectile Dysfunction and gynecomastia Gynecomastia Gynecomastia is a benign proliferation of male breast glandular ductal tissue, usually bilateral, caused by increased estrogen activity, decreased testosterone activity, or medications. The condition is common and physiological in neonates, adolescent boys, and elderly men. Gynecomastia in men
  • Large tumors can present with headaches and visual problems.

Diagnosis and Management

Diagnostic algorithm

Diagnostic algorithm for diagnosing hyperprolactinemia

Diagnostic algorithm to follow for a patient presenting with secondary amenorrhea Amenorrhea Absence of menstruation. Congenital Malformations of the Female Reproductive System

Image by Lecturio.

Laboratory tests

  • Pregnancy Pregnancy The status during which female mammals carry their developing young (embryos or fetuses) in utero before birth, beginning from fertilization to birth. Pregnancy: Diagnosis, Physiology, and Care testing to rule out pregnancy Pregnancy The status during which female mammals carry their developing young (embryos or fetuses) in utero before birth, beginning from fertilization to birth. Pregnancy: Diagnosis, Physiology, and Care in premenopausal women
  • Repeated measurements of PRL levels to confirm hyperprolactinemia (PRL level > 200 ng/ml in a man or non-pregnant woman → prolactinoma)
  • TSH levels should be measured to rule out hypothyroidism Hypothyroidism Hypothyroidism is a condition characterized by a deficiency of thyroid hormones. Iodine deficiency is the most common cause worldwide, but Hashimoto’s disease (autoimmune thyroiditis) is the leading cause in non-iodine-deficient regions. Hypothyroidism (PRL < 100 ng/mL).
  • Visual field testing Visual Field Testing Ophthalmic Exam to assess complications
  • FSH FSH A major gonadotropin secreted by the adenohypophysis. Follicle-stimulating hormone stimulates gametogenesis and the supporting cells such as the ovarian granulosa cells, the testicular sertoli cells, and leydig cells. Fsh consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity. Menstrual Cycle, LH LH A major gonadotropin secreted by the adenohypophysis. Luteinizing hormone regulates steroid production by the interstitial cells of the testis and the ovary. The preovulatory luteinizing hormone surge in females induces ovulation, and subsequent luteinization of the follicle. Luteinizing hormone consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity. Menstrual Cycle, testosterone Testosterone A potent androgenic steroid and major product secreted by the leydig cells of the testis. Its production is stimulated by luteinizing hormone from the pituitary gland. In turn, testosterone exerts feedback control of the pituitary LH and FSH secretion. Depending on the tissues, testosterone can be further converted to dihydrotestosterone or estradiol. Androgens and Antiandrogens, and estrogen Estrogen Compounds that interact with estrogen receptors in target tissues to bring about the effects similar to those of estradiol. Estrogens stimulate the female reproductive organs, and the development of secondary female sex characteristics. Estrogenic chemicals include natural, synthetic, steroidal, or non-steroidal compounds. Ovaries: Anatomy levels will be decreased.

Imaging

  • Magnetic resonance imaging (MRI) is the study of choice to identify or confirm pituitary Pituitary A small, unpaired gland situated in the sella turcica. It is connected to the hypothalamus by a short stalk which is called the infundibulum. Hormones: Overview and Types masses.
  • Particularly useful in cases with a history of head trauma Head trauma Head trauma occurs when external forces are directed to the skull and brain structures, resulting in damage to the skull, brain, and intracranial structures. Head injuries can be classified as open (penetrating) or closed (blunt), and primary (from the initial trauma) or secondary (indirect brain injury), and range from mild to severe and life-threatening. Head Trauma, headaches, and visual problems
Prolactinoma

Axial Axial Computed Tomography (CT) (left) and sagittal Sagittal Computed Tomography (CT) (right) MRI images of a prolactinoma (slim arrow)

Image: “Prolactinoma” by Tajana Tešan Tomić et al AL Amyloidosis. License: CC BY 4.0, edited by Lecturio.

Management

  • 1st-line: dopamine Dopamine One of the catecholamine neurotransmitters in the brain. It is derived from tyrosine and is the precursor to norepinephrine and epinephrine. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. Receptors and Neurotransmitters of the CNS agonists to suppress PRL secretion Secretion Coagulation Studies
  • The underlying cause should be addressed:
    • Discontinuation of medication in drug-induced cases
    • Surgery might be needed in the case of pituitary adenomas Pituitary adenomas Pituitary adenomas are tumors that develop within the anterior lobe of the pituitary gland. Non-functioning or non-secretory adenomas do not secrete hormones but can compress surrounding pituitary tissue, leading to hypopituitarism. Secretory adenomas secrete various hormones depending on the cell type from which they evolved, leading to hyperpituitarism. Pituitary Adenomas.
    • Medical treatment of primary hypothyroidism Primary Hypothyroidism Hypothyroidism
    • Dialysis Dialysis Renal replacement therapy refers to dialysis and/or kidney transplantation. Dialysis is a procedure by which toxins and excess water are removed from the circulation. Hemodialysis and peritoneal dialysis (PD) are the two types of dialysis, and their primary difference is the location of the filtration process (external to the body in hemodialysis versus inside the body for PD). Peritoneal Dialysis and Hemodialysis or renal transplant in the case of chronic renal failure Renal failure Conditions in which the kidneys perform below the normal level in the ability to remove wastes, concentrate urine, and maintain electrolyte balance; blood pressure; and calcium metabolism. Renal insufficiency can be classified by the degree of kidney damage (as measured by the level of proteinuria) and reduction in glomerular filtration rate. Crush Syndrome
  • If medical therapy fails, transsphenoidal surgery is needed with postoperative radiation Radiation Emission or propagation of acoustic waves (sound), electromagnetic energy waves (such as light; radio waves; gamma rays; or x-rays), or a stream of subatomic particles (such as electrons; neutrons; protons; or alpha particles). Osteosarcoma.
  • Small prolactinomas with minimal symptoms should be followed with serial PRL levels and computed tomography (CT)/MRI scans yearly.

Clinical Relevance

The following conditions should be ruled out in the case of hyperprolactinemia: 

  • Hypothyroidism Hypothyroidism Hypothyroidism is a condition characterized by a deficiency of thyroid hormones. Iodine deficiency is the most common cause worldwide, but Hashimoto’s disease (autoimmune thyroiditis) is the leading cause in non-iodine-deficient regions. Hypothyroidism: deficiency of the T3 T3 A T3 thyroid hormone normally synthesized and secreted by the thyroid gland in much smaller quantities than thyroxine (T4). Most T3 is derived from peripheral monodeiodination of T4 at the 5′ position of the outer ring of the iodothyronine nucleus. The hormone finally delivered and used by the tissues is mainly t3. Thyroid Hormones and T4 T4 The major hormone derived from the thyroid gland. Thyroxine is synthesized via the iodination of tyrosines (monoiodotyrosine) and the coupling of iodotyrosines (diiodotyrosine) in the thyroglobulin. Thyroxine is released from thyroglobulin by proteolysis and secreted into the blood. Thyroxine is peripherally deiodinated to form triiodothyronine which exerts a broad spectrum of stimulatory effects on cell metabolism. Thyroid Hormones hormones Hormones Hormones are messenger molecules that are synthesized in one part of the body and move through the bloodstream to exert specific regulatory effects on another part of the body. Hormones play critical roles in coordinating cellular activities throughout the body in response to the constant changes in both the internal and external environments. Hormones: Overview and Types. Will present with high levels of TSH and moderately increased PRL levels.
  • Chronic renal failure Renal failure Conditions in which the kidneys perform below the normal level in the ability to remove wastes, concentrate urine, and maintain electrolyte balance; blood pressure; and calcium metabolism. Renal insufficiency can be classified by the degree of kidney damage (as measured by the level of proteinuria) and reduction in glomerular filtration rate. Crush Syndrome: progressive loss of renal function. Will present with uremic syndrome in patients Patients Individuals participating in the health care system for the purpose of receiving therapeutic, diagnostic, or preventive procedures. Clinician–Patient Relationship undergoing dialysis Dialysis Renal replacement therapy refers to dialysis and/or kidney transplantation. Dialysis is a procedure by which toxins and excess water are removed from the circulation. Hemodialysis and peritoneal dialysis (PD) are the two types of dialysis, and their primary difference is the location of the filtration process (external to the body in hemodialysis versus inside the body for PD). Peritoneal Dialysis and Hemodialysis.
  • Gigantism Gigantism The condition of accelerated and excessive growth in children or adolescents who are exposed to excess human growth hormone before the closure of epiphyses. It is usually caused by somatotroph hyperplasia or a growth hormone-secreting pituitary adenoma. These patients are of abnormally tall stature, more than 3 standard deviations above normal mean height for age. Acromegaly and Gigantism/ acromegaly Acromegaly A condition caused by prolonged exposure to excessive human growth hormone in adults. It is characterized by bony enlargement of the face; lower jaw (prognathism); hands; feet; head; and thorax. The most common etiology is a growth hormone-secreting pituitary adenoma. Acromegaly and Gigantism: excess production of growth hormone by the pituitary gland Pituitary gland The pituitary gland, also known as the hypophysis, is considered the “master endocrine gland” because it releases hormones that regulate the activity of multiple major endocrine organs in the body. The gland sits on the sella turcica, just below the hypothalamus, which is the primary regulator of the pituitary gland. Pituitary Gland: Anatomy, due to a somatotroph adenoma Somatotroph adenoma A pituitary tumor that secretes growth hormone. In humans, excess human growth hormone leads to acromegaly. Pituitary Adenomas. The tumor Tumor Inflammation will produce an increase in PRL through the inhibition of regulation from the hypothalamus Hypothalamus The hypothalamus is a collection of various nuclei within the diencephalon in the center of the brain. The hypothalamus plays a vital role in endocrine regulation as the primary regulator of the pituitary gland, and it is the major point of integration between the central nervous and endocrine systems. Hypothalamus.
  • Prolactinomas: tumors from the anterior pituitary Pituitary A small, unpaired gland situated in the sella turcica. It is connected to the hypothalamus by a short stalk which is called the infundibulum. Hormones: Overview and Types that secrete PRL. Prolactinomas present with typical signs and symptoms of elevated PRL levels, with PRL usually over 200 ng/ml. An MRI identifies the location and size of the tumor Tumor Inflammation.
  • Pituitary adenomas Pituitary adenomas Pituitary adenomas are tumors that develop within the anterior lobe of the pituitary gland. Non-functioning or non-secretory adenomas do not secrete hormones but can compress surrounding pituitary tissue, leading to hypopituitarism. Secretory adenomas secrete various hormones depending on the cell type from which they evolved, leading to hyperpituitarism. Pituitary Adenomas: tumors that can secrete PRL or other pituitary Pituitary A small, unpaired gland situated in the sella turcica. It is connected to the hypothalamus by a short stalk which is called the infundibulum. Hormones: Overview and Types hormones Hormones Hormones are messenger molecules that are synthesized in one part of the body and move through the bloodstream to exert specific regulatory effects on another part of the body. Hormones play critical roles in coordinating cellular activities throughout the body in response to the constant changes in both the internal and external environments. Hormones: Overview and Types (growth hormone (GH) or adrenocorticotropic hormone Adrenocorticotropic hormone An anterior pituitary hormone that stimulates the adrenal cortex and its production of corticosteroids. Acth is a 39-amino acid polypeptide of which the n-terminal 24-amino acid segment is identical in all species and contains the adrenocorticotropic activity. Upon further tissue-specific processing, acth can yield alpha-msh and corticotropin-like intermediate lobe peptide (clip). Adrenal Hormones (ACTH)). Pituitary adenomas Pituitary adenomas Pituitary adenomas are tumors that develop within the anterior lobe of the pituitary gland. Non-functioning or non-secretory adenomas do not secrete hormones but can compress surrounding pituitary tissue, leading to hypopituitarism. Secretory adenomas secrete various hormones depending on the cell type from which they evolved, leading to hyperpituitarism. Pituitary Adenomas can disrupt the hypothalamic-pituitary axis Hypothalamic-pituitary axis Hypothalamic and Pituitary Hormones, affecting the inhibition of PRL release Release Release of a virus from the host cell following virus assembly and maturation. Egress can occur by host cell lysis, exocytosis, or budding through the plasma membrane. Virology. An MRI will confirm the diagnosis.

References

  1. Kasper, Fauci, Hauser, Longo, Jameson, & Loscalzo. (2015). Harrison’s Principles of Internal Medicine (19th ed., pp. 2266-2267).
  2. Kumar, V., Abbas, A.K., & Aster, J. (2014). Robbins Basic Pathology (9th ed., pp. 719-720).

USMLE™ is a joint program of the Federation of State Medical Boards (FSMB®) and National Board of Medical Examiners (NBME®). MCAT is a registered trademark of the Association of American Medical Colleges (AAMC). NCLEX®, NCLEX-RN®, and NCLEX-PN® are registered trademarks of the National Council of State Boards of Nursing, Inc (NCSBN®). None of the trademark holders are endorsed by nor affiliated with Lecturio.

Study on the Go

Lecturio Medical complements your studies with evidence-based learning strategies, video lectures, quiz questions, and more – all combined in one easy-to-use resource.

Learn even more with Lecturio:

Complement your med school studies with Lecturio’s all-in-one study companion, delivered with evidence-based learning strategies.

User Reviews

¡Hola!

Esta página está disponible en Español.

🍪 Lecturio is using cookies to improve your user experience. By continuing use of our service you agree upon our Data Privacy Statement.

Details