Anesthesia as science is considered safer today than in the past. Despite advancements in medicine and technology, however, administering anesthesia is not a risk-free procedure and requires careful patient screening and assessment for risk factors. There are also various types of anesthesia, and some are more appropriate than others depending on the type of procedure for which it is being administered. This article encompasses discussion on thoracic anesthesia, endobronchial tube positioning, complications, and other issues, cardiac anesthesia, and neuro-anesthesia.
Are you more of a visual learner? Check out our online video lectures and start your anesthesiology course now for free!

bronchoscopy

Image: “Bronchoscopy.” by Unknown photographer – This image was released by the National Cancer Institute, an agency part of the National Institutes of Health, with the ID 1951. License: Public Domain


Thoracic Anesthesia

Thoracic anesthesia as a practice requires detailed knowledge of respiratory physiology, anatomy, pharmacology, and surgical techniques for patients having frequent, major comorbidities. The field of thoracic anesthesia continues to evolve because of new surgical developments and enhanced technologies in anesthesia. Progress in lung isolation techniques, ventilation management, and pain control strategies have collectively culminated in improved patient outcomes. Airway management is also continually improving as more sophisticated advances and devices improve the feasibility of lung isolation, ease surgical access, enhance intra-operative visibility, and optimize access to the operative field.

Right or Left-lung anesthesia and Double-lumen endotracheal tubes (DLT)

Thoracic surgery also referred to as cardiothoracic surgery, is a field of medicine characterized by the surgical treatment of organs inside the thorax (chest). Thoracic surgery generally involves treatment of conditions involving the lungs (lung disease) and the heart (heart disease). Patients undergoing thoracic surgery often require isolation of the right or left lung that will receive operation during surgery. The isolation leaves only one lung ventilated, and it is vital that this lung is able to provide adequate oxygenation and ventilation to support life. Management of one-lung anesthesia is considered one of the most difficult skills required by anesthesiologists.

Positioning of the endobronchial tube for right lung ventilation

f6-large

The right mainstem bronchus is shorter than the left, and the distal cuff of a right endobronchial tube must be placed so ventilation occurs separately to the right and left lung. It is essential that both these tubes ventilate each bronchus separately. In cases where a right lung resection is necessary, the left lung is ventilated, and the right is suctioned. The presence of leaks preventing positive pressure ventilation is a complication that may be difficult to manage and may lead to hypoxia. The anesthesiologist must be an expert at using a fiber-optic bronchoscope to position the tube.

Bronchial blocker

A bronchial blocker, also known as an endobronchial blocker, is a device that can be inserted down a tracheal tube, after tracheal intubation, to block off the right or left main bronchus of the lungs. This procedure enables the achievement of controlled one-sided ventilation of the lungs in thoracic surgery. The lung tissue distal to the obstruction will collapse and allow an improved surgeon’s view and access to relevant structures within the thoracic cavity.

Bronchial blockers are used to achieve lung separation and one-lung ventilation as an alternative to double-lumen endotracheal tubes (DLT). This is also a method of choice in pediatric patients for whom even the smallest DLTs may be too large. Again, the use of a fiber-optic bronchoscope is essential for positioning of the blocker.

Complications and other issues

Any field of medicine or subspecialty may likely be accompanied by its fair share of complications or controversies. Thoracic anesthesia is no exception. Some potential concerns or problems may be described as follows:

Complications Explanation
Dislodgement of the endobronchial tube or blocker Common complication, aggressive use of a bronchoscope to reposition is the key
Hypoxemia (low oxygen in the blood) Can be minimized by correct tube placement, the addition of PEEP to the non-operated lung, and CPAP to the operated lung
Massive hemorrhage Blood can contaminate the ventilated lung impairing gas exchange.
Post-operative ALI Potentially lethal complication
Post-operative pain management Post-operative pain can be one of the most challenging areas in thoracic surgery patients. The placement of a thoracic epidural for pain relief allows patients to be comfortable, ambulate early, and take deep breaths and cough when necessary.

Cardiac Anesthesia

Cardiac anesthesia refers to an anesthesia subspecialty that is focused on providing care to patients during cardiothoracic surgery procedures which involve surgery on the chest. Cardiothoracic surgery describes nearly any type of surgery involving the thorax (chest). Many patients require placement on cardiopulmonary bypass during cardiothoracic surgery. A cardiopulmonary bypass can present additional risks and concerns and may complicate the surgery. Cardiac anesthesia with cardiopulmonary bypass can complicate the tasks of ensuring analgesia, amnesia, and adequate muscle relaxation. When the bypass is not necessary, special concerns with chest surgery may still arise; however, using a cardiac anesthesia specialist can help to reduce the risks of complication.

heart-lung bypass

Image: “The image shows how a heart-lung bypass machine works during surgery.” by National Heart Lung and Blood Institute (NIH). License: Public Domain

Cardiopulmonary bypass (CPB)

Cardiopulmonary bypass (CPB) is a technique that temporarily takes over the heart and lung functions during surgery and maintains the circulation of blood and oxygen content of the body. The cardiopulmonary bypass (CPB) machine allows the patient’s blood to bypass the heart and lungs during surgery but is pumped back into the patient to assure perfusion to other organs. The heart is at a standstill during bypass and allows the surgeon to work on a stable target. For certain procedures such as valvulotomy and coronary bypass, some surgeons prefer to operate on a beating heart. The cardiopulmonary bypass (CPB) technique, however, is not free of complications. CPB can result in pharmacodynamic and pathophysiologic changes that perturb the usual homeostasis of the body.  Some examples are as follows:

  • Postperfusion syndrome (also known as “pump head”)
  • Hemolysis
  • Capillary leak syndrome
  • Clotting of blood in the circuit – can block the circuit (particularly the oxygenator) or send a clot into the patient.
  • Air embolism
  • Leakage – a patient can rapidly exsanguinate, or lose blood perfusion of tissues if a line becomes disconnected.

Approximately 1.5% of patients who undergo cardiopulmonary bypass (CPB) are at risk of developing acute respiratory distress syndrome (ARDS). These complications can make CPB a major challenge.

Left ventricular assist device (LVAD)

The left ventricular assist device (LVAD) is a type of mechanical heart pump that is placed inside a patient’s chest to assist the heart with pumping oxygen-rich blood throughout the body. The LVAD does not replace the heart like an artificial heart. Instead, the LVAD is more of an assistant to the heart. Some patients with advanced heart failure are considering the LVAD as a type of destination therapy (DT) since it has been approved as a bridge to heart transplantation (BTT). Some significant issues are summarized as follows:

Issue Explanation
Induction of LVAD flow May unveil right ventricular dysfunction demanding aggressive management, sometimes to the extent that an RVAD might be indicated as well.
Recirculation forced by aortic insufficiency May acutely stress the flow capacity of the LVAD and also reduce its functional life potential.
Systemic ‘vasoparesis’ May necessitate the administration of adrenergic agonists, vasopressin, or methylene blue to achieve optimal systemic arterial pressures.
Complex coagulation disturbances with subsequent re-exploration for bleeding Not infrequent in the early postoperative period

Valves

Valve replacement procedures have been used frequently and successfully and are generally safe and standardized. Any superiority of a particular genre of the valve is equivocal. Post-operative management depends on the valve type used.  Some important differences can be summarized as follows:

Valve type Benefits Risks
Metal valves Longevity: last around 20 years Lifelong anticoagulation is needed, to prevent strokes and embolic phenomena.
Tissue valves Short lifespan: last about 10 years Anticoagulation is not needed.

Technological advances in the field of valve surgery have yielded the genesis of an indigenous percutaneous device—the MitraClip. This device potentially ameliorates mitral regurgitation by transatrial septal placement of a ‘double alligator’ clip which reduces the size of the leaky opening of the mitral valve. Intra-operative, three-dimensional trans-esophageal echocardiography (TEE) provides a great advantage in the accurate placement of the MitraClip.

Anesthetic responsibilities

The need for near-continuous TEE combined with the anticipated duration of the procedure favors general endotracheal anesthesia.

Cardiac anesthesia exists to ensure the absence of bradycardia, vasoconstriction, optimum fluid management and observant monitoring.

Short-acting, potent inhalational anesthetics are preferred; neuromuscular blockers are not necessary. The need for inotropic agents frequently arises prior to bypass and coming off bypass.

When reversed from the bypass, unstable vital parameters often demand intensive care unit (ICU) transfer. These patients are usually ventilated electively and transferred from ICU only once they are stable.

Complications

Cardiac surgery and cardiopulmonary bypass (CPB) had high morbidity rates in the past. Advances in technology and better optimization of the heart during CPB have dramatically improved patient outcomes.  Some significant complications are described below:

Complication Explanation
Failure to come off bypass This is now relatively rare but used to cause many deaths.
Heart failure coming off bypass May require LVAD or RVAD.
Massive hemorrhage both from the use of anticoagulants and the effects of the CPB device Nearly lethal
Cardiac arrhythmias, particularly atrial fibrillation Early detection followed by aggressive rapid reversal is critical
Cardiac tamponade Potentially life-threatening; immediate correction of the utmost essence; usually requires the transport of an unstable patient back to the operating room (OR).
Pain from sternal movement post-operatively Occasionally severe; requires treatment
Recall during anesthesia Much less frequent during modern anesthesia; use of high doses of opioids for this surgery must be accompanied by amnestic drugs.
Cardiac arrest in the OR or the CSICU The chest should be opened with open cardiac massage employed; external cardiac massage on an unstable chest wall is ineffective.
Heart block Requires the insertion of a pacemaker.

Neuro-Anesthesia

Neurosurgical anesthesiology is a subspecialty of anesthesiology that primarily focuses on the anesthetic management of patients with diseases of the central nervous system (CNS) which also includes the brain and spine. Most neurosurgical procedures require general anesthesia, but some can be done with deep sedation. One of the most critical aspects of neuro-anesthesia is the control of intracranial pressure (ICP). If ICP is lowered too aggressively, cerebral blood flow can be reduced, and ischemic brain damage can occur.

Drug Effect on cerebral blood flow ICP
Vapors Increase Increase
Propofol Decrease Decrease
Ketamine Increase Increase
Etomidate Little effect Decrease
Narcotics Little effect Little effect

There are alternative measures available to reduce intracranial pressure (ICP) such as having the patient hyperventilate before induction and providing mild hyperventilation once intubated.  Osmotic diuretics (mannitol) and loop diuretics (furosemide) reduce the water load of the brain and can be utilized as cerebral decongestants.

Role of local anesthesia and sedation in neuro-anesthesia

deep brain stimulation parkinson's disease

Image: “Deep brain stimulation in a Parkinson’s patient.” by Hellerhoff – Own work. License: CC BY-SA 3.0

Burr hole surgery, a procedure where one or more arachnoid openings are made over both cerebral hemispheres or in the skull to relieve bleeding, had been common practice for centuries without anesthesia. This type of surgery is now often administered with local anesthesia to help relieve pressure on the brain due to fluid build-up or collection.

More modern procedures (e.g., deep brain stimulation for patients with Parkinson’s disease) can be done almost exclusively with local anesthesia and a little sedation. The surgeon inserts probes deep into the brain and stimulates ganglia associated with Parkinson’s disease.

Complications of neuroanesthesia

In some cases, neuro-anesthesia can prove to be a challenging area of anesthesiology. It is necessary to maintain the critical equation between intracranial pressure and cerebral perfusion. Some complications may include but are not limited to the following:

Complication Explanation
Massive hemorrhage Very difficult to treat
Cerebrovascular accidents (strokes) Often lead to permanent morbidity
Failure to awaken from anesthesia A thorough search for a surgical cause and/or a disease cause and/or anesthetic cause must be sought.
Increased ICP Permanent damage to the brain

Neuro-anesthesia necessitates customized management.  Some relevant clinical scenarios are discussed as below:

Issue Explanation
Airway management in acromegalic patients Acromegaly is characterized by macroglossia, prognathism, and hypertrophy of pharyngeal and laryngeal tissues. As a result, mask fit, mask ventilation, laryngoscopy, and correct tracheal tube placement may be difficult. Mallampati classification that employs degrees of visualization of the pharynx when the patient opens his/her mouth is used for objective assessment and further management.
Neuroendoscopic procedures Cardiac arrhythmia, hemodynamic changes, cranial nerve dysfunction, and intracranial hemorrhage are anesthetic concerns.
Sitting position Has fallen out of favor in many practices; cerebral hypoperfusion, pneumocephalus, venous air embolism with hypotension are potential issues.
Intracranial lesions located around the speech areas Fascinating and equally challenging; “awake craniotomy” is often used in these patients.
Pain management Brain lacks pain receptors, but the rich innervation of the skin, periosteum of the skull, and the meninges challenge the former belief that minimal pain management is required in intracranial surgeries.

Summary

Anesthesia continues to benefit from advancements in technology and medical discovery. One of the most complex branches, thoracic anesthesia, may involve one-lung ventilation, the use of endobronchial tubes and blockers, and pain management. Cardiac anesthesia incorporates preservation of the heart during the use of a cardiopulmonary bypass (CPB) machine. Neuro-anesthesia can be equally complex and require customized management. All of these specialized areas of anesthesia can include varying levels of complication. It is necessary to exercise constant vigilance and effective management to ultimately foster effective patient care and recovery.

Review Questions

The correct answers can be found below the references.

1. Which of the following is true regarding the management of dislodged endobronchial tube?

  1. Remove the tube immediately to avoid atelectasis.
  2. Remove the tube immediately to avoid hyperinflation.
  3. Use of bronchoscope solves the problem.
  4. Do not do anything as it is not significant.

2. Recall after cardiac surgery can be prevented by the use of what?

  1. Potent amnestic agents
  2. Opioids
  3. Adequate liquids preoperatively
  4. Neuromuscular blockers

3. Which classification is used in acromegalic patients to assess the airway?

  1. Wilson classification
  2. Murthy classification
  3. Acromegaly assessment protocol
  4. Mallampati classification
Do you want to learn even more?
Start now with 1,000+ free video lectures
given by award-winning educators!
Yes, let's get started!
No, thanks!

Leave a Reply

Register to leave a comment and get access to everything Lecturio offers!

Free accounts include:

  • 1,000+ free medical videos
  • 2,000+ free recall questions
  • iOS/Android App
  • Much more

Already registered? Login.

Leave a Reply

Your email address will not be published. Required fields are marked *