Are you more of a visual learner? Check out our online video lectures and start your anatomy course now for free!

Shoulder joint

Image: “Shoulder joint” by OpenStax College – Anatomy & Physiology, Connexions Web site., Jun 19, 2013. License: CC BY 3.0

Surface Anatomy of the Shoulder Joint

The articulatio humero-scapularis (shoulder joint) is one of the ball and socket joints. The scapula is the proximal joint component, with a concave articulation surface due to its glenoid cavity, while its distal joint partner, the humeral head, is convex. It is the most mobile joint in the body, allowing flexion/extension, abduction/adduction, and internal/external rotation. However, it is also the least stable because of the lack of bone structure. A large complex system of muscles and ligaments, which functionally turn the shoulder joint into a so-called force-locking joint, compensates for the instability.  

Osteology of Upper Limb: Humerus, Clavicle, and Scapula

Osseous structures and articular surfaces of the humerus

Humerus and Elbow Joint

Image: ‘Humerus and elbow joint’ by Phil Schatz. License: CC BY 4.0

The proximal humerus is divided into three sections along the proximal to the distal axis, known as the caput, collum, and corpus humeri.

Caput humeri

The convex humeral head has a 2.5 cm radius. The articular surface, which is covered with cartilage, is thickest in the center and thinner towards the exterior.

Anatomical neck

The annular anatomical neck separates the head of the humerus from the diaphysis.


There are two osseous protuberances on the lateral anatomical neck (refer to the illustration above). In the cranium, the tuberculum major (greater tubercle) is aligned in the caudal-dorsal direction. The tuberculum minus (lesser tubercle)is located ventrally. Both structures represent the origins of the muscular system. The tubercles run longitudinally and parallel to the bicipital groove in the crista tuberculi majoris et minoris (crests of the major and minor tubercles), which, in turn, also form the muscle attachments. The bicipital groove, along with the long traversing head of the biceps tendon, separates the two tubercles from each other structurally.

Collum and Corpus humeri

The corpus humeri are distal to the tuberosity. The surgical neck (also known as the collum humeri) constitutes the proximal portion, distal to the tuberosity. The surgical neck derives its name from the location of the humerus fractures at this position. Surgeons use it to differentiate between a humeral neck fracture (proximal) and a humeral shaft fracture (distal).

Humerus: Angle of inclination and retroversion

The collum axis traverses the center of the anatomical neck and the head of the humerus,. It has an inclination angle of approximately 45° caudally along the shaft axis.

The retroversion (retro torsion) describes the proximal rotation towards the distal end of the humerus in the diaphyseal area. In this case, the collum axis represents the proximal axis; the distal axis runs through both epicondyles. In the transverse plane, both constitute an angle ranging between 20° and 30°. Neonatally, this angle is at 60°. The goal of retroversion is to optimize the forearm position and ensure the hand’s optimal function.

Osseous structures and articular surfaces of the scapula


Image: ‘Scapula’ by Phil Schatz. License: CC BY 4.0

The scapula forms the proximal osseous portion of the shoulder joint and has a direct connection to the chest and ribs.

Glenoid cavity

The proximal articular surface is very flat and is located on the lateral angle of the scapula. It is smaller cranially than in the caudal direction, and the vertical alignment is longer than the horizontal. Thus, the joint surface resembles a pear. The surface, covered with cartilage, is thin in the center and thicker towards the exterior, contrary to that of the joint surface of the humerus.

Only 25–30% of the humeral articular surface is in contact with the glenoid labrum and the cavity because of two joint surfaces’ different size ratios. Stabilizing the adhesion caused by the synovial fluid facilitates contact between the two joint partners. The supraglenoid tubercle, the origin of the musculus biceps brachii, is located at the glenoid’s cranial margin. The infraglenoid tubercle is located in the caudal section and represents the origin of the musculus triceps brachii caput longum.

Glenoid labrum

The glenoid labrum is a meniscal structure at the edge of the glenoid. It is narrower ventrally, shorter than in other areas, and fixated with the tip pointing towards the joint cavity. The labrum is especially well-fixed caudally. Dorso-cranially, the labrum is connected to the biceps and forms the so-called biceps anchor.

Furthermore, the labrum increases the concave joint surface, supporting overall joint stability by slowing excessive translation. In functional terminology, the positive engagement of the joint through the cavity and the labrum is referred to as concavity compression.

Important information about the scapula: Superior tilt and retroversion

The caudal portion of the glenoid cavity is adjusted by 5–10 degrees laterally. Consequently, the joint surface is minimally oriented cranially but exhibits a major grade resistance, which can result in a functionally unstable humeral head.

The sagittal and tangential planes of the cavitas form an angle of approximately 30°. By aligning the joint surface along the dorsomedial to the ventrolateral direction, the joint is stabilized dorsally, although it is unstable ventrally. Consequently, joint lunations are much more frequent ventrally than dorsally. The rotator cuff muscular system is another important dorsally stabilizing factor.

Shoulder joint capsule

The joint capsule consists of two different layers: the membrana synovialis (synovial membrane) and the membrana fibrosa (fibrous membrane). The bursae protect the joint capsule from friction and pressure. 

The synovial membrane is very thin and consists of intima and subintima. The intima consists of 1–4 layers of synoviocytes that produce synovial fluid. However, the subintima is composed of loose connective tissue.

The fibrous membrane forms the outer covering of the joint capsule and consists of approximately 80% of dense connective tissue with a high density of collagen fibers. The entire rotator cuff and the coracohumeral and glenohumeral ligaments are in direct contact with the fibrous membrane.

The joint capsule and the labrum develop together within the cavity. While the synovial membrane attaches to the apex of the labrum, the attachment of the fibrous membrane is located at the base.

With respect to the humerus, the capsule is fixed with two membranes at the anatomical neck, except in the area of the long head of the biceps. The fibrous membrane forms a bridge to the bicipital groove. The synovial membrane covers the tendon to the distal end of the sulcus as the vagina tendinis intertubercularis, which is the tendon sheath of the long biceps.

In an upright position, when the shoulder joints falling loosely on each side of the body (neutral zero position, NN), the cranial elements of the capsule are tense, and the axillary recess is wrinkled.

Bursa subtendinea musculus subscapularis and bursa subcoracoidea

The bursa subtendinea subscapularis is ventral to the subscapularis muscle. It is connected to the interior of the joint via the Weitbrecht’s foramen. It breaks through the capsule wall and the glenohumeral ligament. The bursa cushions the subscapularis muscle against the joint.

The bursa subcoracoid is connected to the caudal bursa subscapularis and protects the tendon from friction with the processus coracoideus.

Ligaments of the shoulder joint

In addition to the muscular insertion, ligaments in both the cranial and the ventral regions reinforce the capsule.

Glenohumeral ligament

The glenohumeral ligament is divided into three components: pars superior, medial, and inferior. Generally, it is not very strong, and can hardly be distinguished from the fibrous membrane during dissection.

The pars superior originates ventrally to the tuberositas supraglenoid and inserts above the lesser tuberosity of the humerus, where it connects with the transverse humeral ligament. In this section, the tendon of the subscapularis muscle covers the ligaments.

The base of the pars media is medial to the lesser tuberosity of the humerus and is connected directly to the subscapularis tendon.

The pars inferior is divided into anterior and posterior components, which are inserted into the caudal portion of the anatomicum collum.

The glenohumeral ligament stabilizes the joint ventrally and prevents subluxation of the humeral head in the caudal direction.

Ligamentum coracohumerale

The ligamentum coracohumerale (coracohumeral ligament) is fused with the subscapularis capsule and closes the gap between the musculus supraspinatus and the musculus subscapularis. It is divided into short ventral and long dorsal fibers. The long fibers are connected to the transverse ligament of the humerus, and the short fibers are inserted at the tubercular minus.

This ligament stabilizes as well as prevents the caudal descent of the humeral head.

Clinical examples of shoulder joint injuries or lesions

The shoulder joint may be subjected to different injuries. A selection of frequent lesions encountered by medical students as well as skilled orthopedists and surgeons, and neurologists, is presented here.

SLAP lesion

A SLAP lesion occurs when the labrum dissolves from the cranial socket pole with a partial or complete replacement of the long biceps tendon. It is caused by repeated small traumas to the maximum extended arm or a severe injury such as a fall. In traumatology, there are four types of SLAP lesions, classified according to severity.

  • Type I: A direct injury to the labrum
  • Type II: The labrum, as well as the long biceps tendon, are completely detached from the glenoid rim
  • Type III: The labrum sustains a bucket-handle tear with no injury to the long biceps tendon
  • Type IV: The labrum sustains a bucket-handle tear, and the biceps anchor is torn off.

Traumatic shoulder luxation


Image: “Luxace ramenního kloubu (skiagram)” by LobStoR. License: CC BY-SA 2.5

Shoulder luxations are caused by direct or indirect trauma, as well as flaccid paralysis of the shoulder and shoulder girdle muscles after a stroke. This dislocation is the most common anterior form of luxation.

If, in addition to the humeral head dislocation in the glenoid fossa, a Bankart lesion may occur after shoulder joint dislocation (anterior), damaging the connective tissue ring around the glenoid labrum. Bankart lesion is often accompanied by a joint capsule rupture.

In very severe trauma, a Hill-Sachs lesion may follow a rupture of the glenohumeral ligament and osseous impression on the humeral head due to the impact on the scapula’s articular surface. 


In chronic inflammation, for example, the recessus axillaris may adhere together via a permanently incorrect position and a massive deterioration in shoulder joint mobility. It mainly affects flexion, abduction, and external rotation.

Therapeutic options include infiltration or anti-inflammatory drugs and shoulder joint mobilization via manual therapy or physiotherapy. In extreme cases, such as frozen shouldermobilization under anesthesia may be necessary.

The Subacromial Joint Space

The subacromial joint space, between the humeral head and the acromion, is associated with a high functional and clinical significance for the shoulder joint.

Osseous structures of the subacromial joint space

The acromion and the processus coracoideus form the osseous portions of the subacromial joint space. Together with the ligamentum coracoacromial, they form the acromion.


The acromion is a bony extension of the lateral scapular spine. It is connected to the ventromedial clavicle via the acromioclavicular joint (ACG). It also serves as the origin of the deltoid muscle.

normal bursae surrounding

Image: ‘Diagram of normal bursae surrounding the shoulder joint’ by Zameer Hirji. License: CC BY 3.0

Processus coracoideus

The processus coracoideus originates in the cranial neck of the scapula. It serves as the origin of the biceps short head, the coracobrachialis muscle, and various ligament structures.

Ligaments of the subacromial joint space

The ligamentum coracoacromial is the single ligamentous structure in the subacromial joint space that is functionally related to the shoulder joint. It extends from the coracoid laterally to the anterior acromion and ventrally as well as partly to the ACG. A few fibers of the biceps short head insert into the ligament. It prevents inferior subluxation via a connection with the coracohumeral ligament by counteracting the pull of the pectoralis minor muscle at the processes. It reduces the bending stress on the bone and, thereby, serves as the tension band in the osseous structure.

Structures in the subacromial joint space

In addition to the supraspinatus tendon, the anterior elements of the supraspinatus, and the long biceps tendon, two important bursae are detected in the subacromial joint space. They include the subacromial bursa and the subdeltoid bursa, which are not located directly within the joint space but can be functionally counted as such due to the direct communication with the subacromial bursa.

Subacromial bursa

The bursa is located directly below the acromion and reaches the ACG medially. It is covered by a thin liquid film and ensures a smooth sliding of the tissue layers. The superficial layer adheres to the acromion, while the deep layer is directly connected to the rotator cuff.

Subdeltoid bursa

The subdeltoid bursa communicates directly with the subacromial bursa and exhibits the same frictionless sliding function. It is located between the humeral head, deltoid muscle, and the tendons of the musculus infra- et supraspinatus. The deep layer is fused directly to the humerus bone.

The tendon of the musculus supraspinatus

The flat portion of the musculus supraspinatus travels from the ventral acromion portion in the caudal to the lateral direction.

The tendon of the musculus subscapularis

The cranial portions of the subscapularis muscle are located ventrally in the subacromial joint space, partially running through the greater tuberosity before finally attaching at the bicipital groove.

The tendon of the musculus biceps brachii caput longum

The long biceps tendon also runs through the subacromial sliding space. It is adequately protected against pressure through the vagina tendinis intertubercularis. The challenges associated with the long biceps tendon related to its development or attachment and rarely occur inside the subacromial joint space.

Clinical examples of subacromial joint space

Due to the anatomical confines and the variety of structures traversing the subacromial joint space, secondary signs of impingement and inflammatory mechanisms can develop.

Impingement syndrome

Subacromial impingement

Image: ‘Diagram of normal bursae surrounding the shoulder joint’ by Zameer Hirji. License: CC BY-SA 3.0

Impingement may reveal a spatial bottleneck within the subacromial joint space, probably due to an elevation of the humerus or massive morphological changes of the soft tissue in the joint space. The compression of the subacromial bursa may lead to edema. The space-occupying swelling further narrows the joint space, which increases the pressure on the bursa.

This vicious circle continues until the swelling triggers nociception and reduces the mobility of the shoulder joint. Impingement may also be induced by arthritic changes in the joint and osteophyte formation, particularly in the caudal area. Furthermore, during a significantly rarer coracoidal impingement, morphological changes associated with the osseous structures are induced by lesions of the processus coracoideus.

Surgery is the last treatment option for the management of refractory cases. In endoscopic subacromial decompression (ESD), the subacromial joint space is mechanically extended via access through the deltoid muscle. This extension is accomplished by milling the ventral distortion of the acromion and resizing the ligamentum coracoacromial. It is also removed in cases of secondary inflammatory processes of the subacromial bursa. However, surgical intervention should be delayed to the extent possible due to the important buffer function of the bursa.

Learn. Apply. Retain.
Your path to achieve medical excellence.
Study for medical school and boards with Lecturio.
Rate this article
1 Star2 Stars3 Stars4 Stars5 Stars (Votes: 16, average: 4.56)