Advertisement
Advertisement
Advertisement
Advertisement
Energy is the property that is transferred to an object to allow it to generate work. Energy in the universe is fixed, implying that it can be transferred but cannot be created nor destroyed. Energy exists in many forms: kinetic (moving energy), potential (storing energy), elastic Elastic Connective Tissue: Histology (stretching energy), chemical (reaction energy), radiant (light energy), and thermal (temperature energy). Energy stays constant overall as it is transferred from one form to another.
Last updated: Mar 7, 2022
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement
Advertisement
E ⇒ energy (J or N m)
Energy is one of the most fundamental parts of the universe. Energy supports life itself. It allows objects to move despite other forces, the pressure to be exerted, substances to be heated, and electric current to flow Flow Blood flows through the heart, arteries, capillaries, and veins in a closed, continuous circuit. Flow is the movement of volume per unit of time. Flow is affected by the pressure gradient and the resistance fluid encounters between 2 points. Vascular resistance is the opposition to flow, which is caused primarily by blood friction against vessel walls. Vascular Resistance, Flow, and Mean Arterial Pressure. The 2 most essential forms of energy can be described as follows:
Energy | Equation | Description |
---|---|---|
Potential energy Epot | Epot = FG h | Potential energy is the energy stored by an object of a certain mass Mass Three-dimensional lesion that occupies a space within the breast Imaging of the Breast as a result of its position (for example, when it is held in an elevated position). h = height of the object (m) |
Kinetic energy Ekin | Ekin = ½ m v2 | Kinetic energy is the energy of motion or acceleration or when a resting body is set into
motion. m = mass Mass Three-dimensional lesion that occupies a space within the breast Imaging of the Breast (kg) v = velocity (m/s) |
Gravitational potential energy is the energy that an object contains due to its position in a gravitational field. It is most commonly used when an object is present near the earth’s surface, where acceleration is downward towards the earth (gravity). Gravity is a constant force of 9.8 m/sec2 (for earth). Thus, an item released from the top of a building will fall towards the earth to the base of the building at an acceleration rate of 9.8 m/sec2. The acceleration is denoted as negative due to the downward motion.
These 2 energy states transfer energy back and forth to each other. Kinetic energy is the energy of motion. As an object moves, it is gaining kinetic energy. Potential energy is stored energy, which is the energy that can be used ‘potentially’ for motion.
Let us look at an example of a person sitting down and holding an apple in their hand Hand The hand constitutes the distal part of the upper limb and provides the fine, precise movements needed in activities of daily living. It consists of 5 metacarpal bones and 14 phalanges, as well as numerous muscles innervated by the median and ulnar nerves. Hand: Anatomy. As they raise their hand Hand The hand constitutes the distal part of the upper limb and provides the fine, precise movements needed in activities of daily living. It consists of 5 metacarpal bones and 14 phalanges, as well as numerous muscles innervated by the median and ulnar nerves. Hand: Anatomy, the apple is gaining potential energy. When they release Release Release of a virus from the host cell following virus assembly and maturation. Egress can occur by host cell lysis, exocytosis, or budding through the plasma membrane. Virology the apple, potential energy gets converted into kinetic energy as it falls. Consider another example of a battery available at a store. The battery, when not in use, contains potential energy. When the battery is placed into a toy that uses it to move, the toy will now use the energy stored in the battery. This process is also converting potential energy into kinetic (usable) energy.
The gravitational potential energy can be calculated based on the equation Ug = m g h where Ug is gravitational potential energy, m = mass Mass Three-dimensional lesion that occupies a space within the breast Imaging of the Breast of the object, g = acceleration due to gravity, and h = the height that the object has reached. If an apple is on the ground, it has no gravitational potential energy. As the apple is tossed upwards, it gains gravitational potential energy up to a peak value occurring at the maximum height of the apple’s travel.
The total energy in a system is equal to the sum of the kinetic energy and the gravitational potential energy. When the apple is on the ground, all the energy is kinetic. As it ascends, the kinetic energy is converted to potential energy. At the peak, all the energy is potential energy. As it descends, the reverse occurs: the energy gets converted from potential energy to kinetic energy until it is back on the ground with no potential energy and all kinetic energy. The interesting concept that results is associated with total energy. Total energy at every single point along the path of the apple’s travel is always the same. The total energy simply gets divided into the changing kinetic and potential energies.
Spring potential energy is the potential energy that is stored due to the deformation of the spring, which is an elastic Elastic Connective Tissue: Histology object. The potential energy that is stored is equal to the work done to stretch the spring. It is dependent on the spring constant k, and the distance the spring is stretched. The spring constant is a measure of the stiffness of the spring. Various factors can affect Affect The feeling-tone accompaniment of an idea or mental representation. It is the most direct psychic derivative of instinct and the psychic representative of the various bodily changes by means of which instincts manifest themselves. Psychiatric Assessment the stiffness of the spring, including the material of the spring, the diameter of the spring, the diameter of the wire of the spring, and the length of the spring.
The energy that is contained in the spring is referred to as spring potential energy. This potential energy is denoted as Us. The spring is initially at its ‘happy’ spot, referred to as its equilibrium Equilibrium Occurs when tumor cells survive the initial elimination attempt These cells are not able to progress, being maintained in a state of dormancy by the adaptive immune system. In this phase, tumor immunogenicity is edited, where T cells keep selectively attacking highly immunogenic tumor cells.This attack leaves other cells with less immunogenicity to potentially develop resistance to the immune response. Cancer Immunotherapy position. This position is where the spring is not expanded or compressed.
So, where does the energy exist in the spring? On starting to pull the spring, the spring will expand easily without much force. The more one pulls the spring and the further it stretches, the harder it becomes to pull it even a little more. The same thing occurs in compressing the spring. The more one compresses the spring, the harder it becomes. So, any expansion or compression Compression Blunt Chest Trauma of the spring will cause the spring to tend to go towards the equilibrium Equilibrium Occurs when tumor cells survive the initial elimination attempt These cells are not able to progress, being maintained in a state of dormancy by the adaptive immune system. In this phase, tumor immunogenicity is edited, where T cells keep selectively attacking highly immunogenic tumor cells.This attack leaves other cells with less immunogenicity to potentially develop resistance to the immune response. Cancer Immunotherapy point. This tendency is the conversion of potential energy by compression Compression Blunt Chest Trauma or expansion to kinetic energy as it moves towards the equilibrium Equilibrium Occurs when tumor cells survive the initial elimination attempt These cells are not able to progress, being maintained in a state of dormancy by the adaptive immune system. In this phase, tumor immunogenicity is edited, where T cells keep selectively attacking highly immunogenic tumor cells.This attack leaves other cells with less immunogenicity to potentially develop resistance to the immune response. Cancer Immunotherapy point.
The other important aspect of a string is the presence of elastic Elastic Connective Tissue: Histology recoil Recoil Vessels can stretch and return to their original shape after receiving the stroke volume of blood ejected by the left ventricle during systole. Arteries: Histology: When a spring is stretched, it exerts a restoring force which tends to bring it back to its original length. This restoring force (transfer of potential energy to kinetic energy), is proportional to the amount of stretch as described by Hooke’s law.
Hooke’s law was named after the 17th-century British physicist Robert Hooke. The basis of his law is that for relatively small deformation of spring, the displacement Displacement The process by which an emotional or behavioral response that is appropriate for one situation appears in another situation for which it is inappropriate. Defense Mechanisms or size of the deformation is directly proportional to the deforming force or load. In equation form, it is
F = – k x
x = amount of
displacement
Displacement
The process by which an emotional or behavioral response that is appropriate for one situation appears in another situation for which it is inappropriate.
Defense Mechanisms
k = proportionality constant specific for each spring
F = resultant force
In order to determine the potential energy present from the expansion or compression Compression Blunt Chest Trauma of a spring, it is necessary to know the amount of displacement Displacement The process by which an emotional or behavioral response that is appropriate for one situation appears in another situation for which it is inappropriate. Defense Mechanisms of the spring from its equilibrium Equilibrium Occurs when tumor cells survive the initial elimination attempt These cells are not able to progress, being maintained in a state of dormancy by the adaptive immune system. In this phase, tumor immunogenicity is edited, where T cells keep selectively attacking highly immunogenic tumor cells.This attack leaves other cells with less immunogenicity to potentially develop resistance to the immune response. Cancer Immunotherapy point. Thus, the equation form is as follows:
Us = ½ k (x – xo)2
xo =
equilibrium
Equilibrium
Occurs when tumor cells survive the initial elimination attempt These cells are not able to progress, being maintained in a state of dormancy by the adaptive immune system. In this phase, tumor immunogenicity is edited, where T cells keep selectively attacking highly immunogenic tumor cells.This attack leaves other cells with less immunogenicity to potentially develop resistance to the immune response.
Cancer Immunotherapy point
x = amount of
displacement
Displacement
The process by which an emotional or behavioral response that is appropriate for one situation appears in another situation for which it is inappropriate.
Defense Mechanisms
k = proportionality constant specific for each spring (kg/s2)
This equation is simplified since xo = 0. Thus, Us = ½ k x2.
A summary of the interrelated concepts is important as it gives a clear understanding Understanding Decision-making Capacity and Legal Competence of the information regarding energy. Comprehension of the fundamental types of energy is essential before memorizing the equations to solve problems.
There are 3 types of energy: kinetic, potential, and total energy.
Kinetic energy is the energy of motion.
K = ½ m v2
Potential energy is the stored energy that can be used for motion.
Gravitational potential energy:
Ug = m g h
Spring potential energy:
Us = ½ k (x – xo)2
Total energy:
E = K + U
The total energy is the combined energy that stays constant when an object is moving and at rest or when spring is in equilibrium Equilibrium Occurs when tumor cells survive the initial elimination attempt These cells are not able to progress, being maintained in a state of dormancy by the adaptive immune system. In this phase, tumor immunogenicity is edited, where T cells keep selectively attacking highly immunogenic tumor cells.This attack leaves other cells with less immunogenicity to potentially develop resistance to the immune response. Cancer Immunotherapy and expanding/compressing. The changes that take place occur in the kinetic and potential energies.
Variable Variable Variables represent information about something that can change. The design of the measurement scales, or of the methods for obtaining information, will determine the data gathered and the characteristics of that data. As a result, a variable can be qualitative or quantitative, and may be further classified into subgroups. Types of Variables | Meaning | Units |
---|---|---|
K, U, E | Kinetic, potential, and total energy | Joules (J) |
m | Mass Mass Three-dimensional lesion that occupies a space within the breast Imaging of the Breast | kg |
v | Velocity | m/s |
h | ‘Height’ (vertical distance) from chosen origin | m |
k | Spring constant (spring “stiffness”) | kg/s2 |
The question that comes up in dealing with problems is whether the potential energy changes if the ‘ground level’ is changed. The potential energy U is dependent on h. h is defined as the vertical distance from the chosen origin. So, it is quantifying not how far an object is from the ground, but the change in motion from a relative point. Thus, U is independent of the coordinate system. The important aspect is the change that takes place in U, as well as the change that takes place in h for gravitational potential energy calculations or the change that takes place in x2 for spring potential energy calculations. Thus, potential energy is relative to the change taking place and is not absolute. It is independent of the coordinate system.
The table below shows the different properties relating to energy. They are all different in what they are calculating but provide information about related concepts of energy. Again, it is crucial to understand the concepts first before trying to use the equations. It will make more sense in that manner, and retention of the material will be better in the long run.