A imunidade humoral adaptativa faz parte integrante do sistema imunológico adaptativo, que confere uma defesa altamente específica contra agentes patogénicos, mas apresenta um maior período de resposta (em comparação com o sistema imunológico inato). A imunidade humoral é o braço do sistema imunológico que protege os fluidos extracelulares linfáticos (linfa), interstício e sistema circulatório ( plasma Plasma The residual portion of blood that is left after removal of blood cells by centrifugation without prior blood coagulation. Transfusion Products) da contaminação microbiana mediada por moléculas solúveis. As células B desempenham um papel importante, produzindo anticorpos ou imunoglobulinas. A génese linfocitária B inicia-se na medula óssea, através de um progenitor linfoide comum, passando por diferentes estadios para constituir um recetor de células B. A ativação dependente de células T (que produz células de memória) ou independente de células T (produzindo uma resposta de curta duração) torna-o funcionalmente ativo. Quando ativadas, as células B passam por processos que potencializam a afinidade do antigénio, mudança de classe e diferenciação em células plasmáticas e células de memória. As células plasmáticas produzem os anticorpos, enquanto as células B de memória respondem à reinfeção. Existem diferentes isotipos de imunoglobulinas que conferem proteção imunológica através da ativação do complemento, opsonização, neutralização de toxinas ou vírus e indução da lise celular.
Last updated: Dec 15, 2025
O sistema imunológico fornece defesa (imunidade) contra agentes patogénicos invasores que variam de vírus a parasitas. Os componentes do sistema estão interligados pelo sangue e pela circulação linfática.
Existem 2 linhas de defesa (que se sobrepõem):
| Imunidade inata | Imunidade adaptativa | |
|---|---|---|
| Genética | Codificada pela linha germinativa | Rearranjos de genes Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. DNA Types and Structure envolvidos no desenvolvimento de linfócitos |
| Resposta imune | Inespecífica | Altamente específica |
| Tempo de resposta | Imediata (minutos a horas) | Desenvolve-se por um longo período de tempo |
| Resposta de memória | Sem resposta de memória | Com resposta de memória, que responde rapidamente ao reconhecimento do antigénio |
| Reconhecimento do agente patogénico | Os recetores de reconhecimento de padrões (PRRs), como os TLRs, reconhecem padrões moleculares associados a agentes patogénicos ( PAMPs PAMPs Sepsis and Septic Shock). |
|
| Componentes |
|
|
O sistema imunológico é o principal responsável pela resposta a invasores microbianos. Muitas vezes, o sistema imunológico inato consegue conter os agentes patogénicos, mas os invasores apresentam meios para escapar. A linha de defesa seguinte é o sistema imunológico adaptativo.

Imunidade mediada por células:
A ativação das células T helper resulta na libertação de citocinas, ativando células T citotóxicas e fagócitos (como macrófagos).

A imunidade humoral é mediada por células B e anticorpos.
Imagem por Lecturio.
O recetor da célula B (RCB) consiste na molécula de Ig e na molécula sinalizadora:
A Ig contém 2 cadeias pesadas idênticas e 2 cadeias leves idênticas ligadas por uma ponte dissulfeto. A Ig ligada à membrana está ancorada à superfície celular.
Etapas necessárias para a célula B funcionar:

Fases de diferenciação da célula B:
Em estadios independentes de antigénio, a produção de células B começa com a célula estaminal hematopoiética (HSC, pela sigla em inglês), que se torna um progenitor linfoide comum (CLP, pela sigla em inglês), depois uma célula pré-pró-B ou célula B-progenitora. Os próximos passos incluem o rearranjo génico para montagem da molécula de imunoglobulina (Ig). As cadeias pesadas de imunoglobulinas começam com o rearranjo da diversidade e a junção de segmentos para formar a célula pró-B. Na próxima etapa (pré-célula B), é completada a recombinação da cadeia pesada de Ig (variável, diversidade, junção) e forma-se o recetor pré-célula B. O rearranjo da cadeia leve (kappa (κ) ou lambda (λ)) ocorre como resulta da expressão de uma molécula de anticorpo IgM completa por uma célula B imatura. Segue-se a formação da célula B madura (naive) com IgM e IgD.
Os estadios dependentes de antigénio ocorrem em tecidos linfoides secundários. Uma vez que a célula B madura produz IgM e IgD, pode ocorrer a mudança de classe para produzir IgE, IgG e IgA. As células B são ativadas e tornam-se células plasmáticas ou células de memória.

Ativação de células B (dependente de células T):
O antigénio circulante interage com o recetor da célula B (BCR) da célula B. O antigénio é endocitado e degradado, e os componentes peptídicos são complexados com moléculas MHC II da superfície celular. As células T auxiliares foliculares (Tfh, pela sigla em inglês) (células T auxiliares especializadas CD4+) reconhecem e ligam-se ao complexo antigénio-MHC II. As citocinas são libertadas pelas células Tfh, levando à ativação e proliferação de células B. As células B ativadas entram nos centros germinativos, onde continuam o processo, levando à diferenciação.

Processos de ativação e maturação de células B que ocorrem no centro germinativo:
Na ativação, a célula B desloca-se da zona do manto e entra no centro germinativo. Dá-se a proliferação de células B (expansão clonal) e o aumento da afinidade do anticorpo para o antigénio, através do processo de hipermutação somática. Os ciclos repetidos de proliferação e hipermutação ajustam o recetor de células B. Contudo, nem todas as células B continuam a diferenciação, sobretudo se a afinidade for fraca. Se a ligação antigénio-anticorpo não for adequada pode ocorrer a apoptose. As células com forte afinidade sobrevivem (seleção) com a ajuda de sinais de sobrevivência de células dendríticas foliculares e células T. Estas células B selecionadas seguem para a mudança de classe e diferenciação em células plasmáticas ou células de memória.

Resposta imune primária e secundária:
Numa resposta imune primária, as células B “naive” são estimuladas pelo antigénio. Ocorre a ativação das células B e, posteriormente, a diferenciação em células secretoras de anticorpos. Os anticorpos são específicos para o antigénio. Inicialmente são produzidos anticorpos IgM e, de seguida, IgG. Embora seja desencadeada uma resposta imune, a produção é de baixa quantidade. Na resposta imune secundária, o mesmo antigénio estimula as células B de memória, levando à produção de maiores quantidades de anticorpos específicos produzidos na resposta primária. A produção e libertação de IgG também ocorrem mais cedo.

Fragmentos da imunoglobulina (determinada pelo local onde a enzima papaína divide a Ig):
A região Fab (fragmento de ligação ao antigénio) contém as regiões variáveis (a vermelho) e partes da região constante (a azul) das cadeias pesada e leve. A região Fc (fragmento cristalizável) contém a parte restante (cauda) do anticorpo (região constante apenas da cadeia pesada).

Estrutura do anticorpo (regiões):
Um anticorpo possui uma região variável única (formada por cadeias pesadas e leves) capaz de se ligar a um antigénio diferente e uma região constante (formada por cadeias pesadas).
Proteção contra agentes infeciosos e produtos através de:

As funções dos anticorpos:
Os anticorpos têm múltiplos papeis na imunidade, incluindo neutralização (de microorganismos e toxinas), promoção da fagocitose e ativação das células NK. Adicionalmente, os anticorpos têm um papel no complemento, que consegue levar a lise microbiana, opsonização e fagocitose, bem como recrutamento/ativação de neutrófilos.