Interleaving: How to Mix Related Concepts to Make Learning in Medicine More Durable

Interleaving: How to Mix Related Concepts to Make Learning in Medicine More Durable

October 11, 2021


Adonis Wazir, MD, Satria Nur Sya’ban, MD, Peter Horneffer, MD



In this article in our durable learning series, we explore a very important concept in learning science known as interleaving. While the value of interleaving has been demonstrated in multiple disciplines, it would appear to be significantly underutilized, especially given its potential benefit. In this piece, we will explain what interleaving is and how it is postulated to work from a neuroscientific perspective. We will also look at the evidence that supports its use and then provide recommendations on how medical educators and learners can incorporate it into their approach to learning.

Table of Contents

Interleaving is (Desirably) Difficult

In a previous article, we discussed the importance of understanding the different types of memory and acknowledged their critical role in medical education. Both teachers and learners need to be familiar with the concepts of declarative and procedural memory, as well as how these memory systems work, in order to maximize knowledge retention and boost student performance. The aim of utilizing both systems is ultimately to build elaborate mental schemas that students can refer to when applying learned concepts and use as scaffolds to facilitate the acquisition of new knowledge and skills. Schemas interlace neural links from the procedural and declarative systems that build on preexisting knowledge to form more elaborate neural connections and facilitate deeper understanding.(1)

Although we will explore schemas in depth in another article, a key message is that the strength of these schemas (and in turn the extent to which they facilitate learning) relies on strategies that employ what Robert Bjork calls desirable difficulties.(2) To illustrate, consider how the symptoms of anemia can be taught. One way would be to present the symptoms and ask the students to read them. This task is simple and requires minimal cognitive effort, but the information would naturally dissipate and be forgotten, probably within a few minutes. 

However, if the teacher starts off by asking the students what they think the symptoms of anemia are, they will utilize more cognitive effort while trying to come up with the symptoms. The information is thus more likely to be retained and for a longer period. Put simply, adding difficulty has a positive impact on learning—up to a certain point, that is. Desirable difficulty is based on the notion that the more effort required to retrieve something, the better it is learned(3), unless the task is too difficult—if the learner lacks some essential background knowledge or skill, for example.(4)

In the following sections, we take a deeper look into one of the common learning strategies that make use of desirable difficulties: interleaving. We will explore the evidence behind the strategy, explain how and why it works, and provide recommendations for enhancing medical education, for teachers and for learners.

What is Interleaving?

Interleaving is the practice of varying or mixing up related concepts being taught/learned, as opposed to studying them in a blocked fashion. Interleaving results in the creation of stronger and better neural connections by engaging the students’ neocortex to recognize subtle differences between divergent but overlapping sets of neural links.(1) Interleaving may assist with transfer(5)—the ability to apply learning to other situations—which is precisely the goal of a medical practitioner.

A simple example from mathematics for students learning to perform arithmetic operations with fractions is illustrated below.

Instead of practicing multiplication followed by other operations (blocked practice), the exercises are mixed up (interleaved practice)

Interleaving: How to Mix Related Concepts to Make Learning in Medicine More Durable

The problem with blocked practice is that it is less beneficial with respect to the time investment it requires, although it is perceived as faster and easier by students.(6) In blocked practice, students learn how to solve a given problem and then go on to solve multiple similar problems with little added benefit (example above). Yet, this is preferred by students because it creates an illusion of knowing—because they are “looping information through short-term memory without having to reconstruct the learning from long-term memory”.(3)

Owing to its perceived difficulty, interleaving seems like a counterintuitive strategy. Indeed, students usually avoid this study technique because they do not feel like they are making as much progress as when using blocked practice, but this perception is erroneous. The desirable difficulty this strategy brings about adds an element that is usually underutilized in education: the importance of teaching students not only how to tackle a problem but also when to use the knowledge and skills they have learned to tackle a problem.(1) For example, when students are given a set of cases to solve that are mixed up, they cannot anticipate how to approach those problems the same way as when they are given a set of cases within a particular discipline.

It is crucial to note, however, that for the interleaved strategy to work, the exercises/concepts need to be similar and related to a certain extent. Interleaving cardiac electrophysiology with glycolysis, for example, is not going to yield any benefit.(7) This is because the value of interleaving lies in the fact that students learn to differentiate between concepts that have subtle differences. This also forces students to maximize the use of their procedural memory (an essential tool for health care professionals) as they learn to detect and differentiate patterns by applying their knowledge.(8)

To illustrate, we can look at the following concepts from medicine: anemia, hypoglycemia, hypothyroidism, and depression (figure below). Students in an advanced stage of their training have already covered these pathologies and would know that they can have similar clinical presentations. When students learn and practice cases with these concepts separately, they are taking a blocked approach and developing individual schemas for those concepts. They can master these topics and do well on a quiz that tests these concepts separately. In a real patient encounter (or in a final cumulative examination), however, they will have to distinguish between those conditions that have similar presentations in order to manage a patient presenting with fatigue appropriately. Interleaved practice thus allows students to learn and practice these topics together, developing links between their separate schemas and preparing them for actual scenarios that they might encounter in their careers. In fact, creating a differential diagnosis is an exercise in interleaved practice.

Medical example of interleaving visualizing relationships between neocortex and working memory

Concepts in the brain

Further to the above, this example illustrates how interleaving can be tricky to implement—if these four concepts were interleaved and presented to students in an early stage of their training who were not yet familiar with them, it would be too (undesirably) difficult to make connections, leaving the students confused and frustrated.

Interleaving is applied extensively and effectively in sports training.(9) Rather than practicing specific maneuvers repeatedly before moving on to the next one (passing the ball vs shooting the ball in basketball), players are encouraged to mix up their practice, and their training routines are in fact designed to facilitate that approach. This works very well owing to the extent of involvement of the procedural memory system in sports. The practice of medicine also relies heavily on procedural memory, and the training routines of doctors should also benefit from an interleaved approach.

Interleaving: Insights From the Classroom

Interleaving as a learning strategy was initially assumed to be less effective compared with blocked practice. This hypothesis was tested on students by Kornell and Bjork in 2008.(10) In that study, art students were better able to determine differences between painter styles when they initially learned them in an interleaved manner, thus contributing convincing evidence contrary to the prevailing assumption and demonstrating that interleaving is superior to blocked practice. That study also indicated that students’ metacognitive ability is limited; they thought they learned better with blocked practice.(10) Future studies would go on to show that the same benefit of interleaving is seen with learning science concepts.(8,11,12)

The research suggests that there are two possible mechanisms by which interleaving enhances learning:

  1. Attention attenuation: Repeated examples that are similar will result in faded attention of students and a mechanical rather than cognitive approach.
  2. Discriminative contrast: Interleaving grants more opportunities to compare and contrast different concepts.

There is evidence in the literature to demonstrate the effectiveness of interleaving in medical education as well.(12) Studies have shown that interleaving provides an advantage for knowledge transfer to more complex problems,(7,13,14) highlighting its potential for improving diagnostic problem-solving.(15) For example, a 2003 study by Hatala et al. examined the role of mixed practice for the acquisition of ECG interpretation skills. In the study, students were split into two groups: one that practiced ECG interpretation in a blocked manner and one that employed interleaved learning (figure below). Not surprisingly, the experiment showed that the students who took an interleaved approach performed better in terms of diagnostic accuracy than those who practiced in blocks (46% vs 30% accuracy).(11)

Medical education example of utilizing interleaving vs blocked practice with ECG interpretation(11)

Interleaving: How to Mix Related Concepts to Make Learning in Medicine More Durable

A study on psychology students also demonstrated that those who mix their practice are more likely to do better on examinations that involve knowledge transfer and the application of learned concepts to new contexts.(16)

Implementation of Interleaving in Medical Education

Implementing interleaving might not be straightforward, especially in medical education, owing to challenges in implementation within traditional educational settings and the long-established practice of the traditional blocking of medical topics.

There are several things to consider in order to implement interleaving:

  • Who will be responsible for implementing this study technique? Students, teachers, administrators?
  • What subjects/concepts can be interleaved? How similar or different should they be? 
  • What specific examples exist in medical education and how have they been implemented?
  • Has an adequate knowledge foundation been established to allow for effective interleaving (comparing and contrasting concepts)—it is difficult to compare and contrast concepts which one does not understand in the first place!

Interleaving is essentially mixing up practice of related elements. This is simple to do in the clinical years of medical school and occurs naturally in a clinical environment—each patient experience offers a different set of exercises and concepts, most of which are related. With repeated exposure over time, students become more familiar with the nuances between medical topics and begin to master and apply them in practice. In the preclinical environment, it is less natural. Educators tend to teach things in blocks and students are tested in blocks, so they also study in blocks. A curricular approach that incorporates a case-based format from the early stages of the educational process attempts to apply interleaving in the basic science curriculum but depends on having students with a good knowledge foundation and who are particularly adept at drawing associations.

A possible, yet challenging way to implement interleaving in medicine is through the spiral curriculum approach, a curriculum model based on cognitive theory advanced by Jerome Bruner. In this approach, the same topic is introduced to learners at different stages of their studies, increasing in depth and complexity.(17) When applied properly and with an accurate understanding of the learners’ comprehension levels, this design can allow learners to benefit from interleaving. However, incorrectly applied (e.g., owing to insufficient points of relatedness or lack of distinguishing features between topics), a barrier to understanding and a negligible beneficial impact may result. It is thus important to take ample care when utilizing this curricular model as your means of incorporating interleaving into daily learning; when in doubt, start with smaller blocks of topics over smaller periods of time.

Simulations are a prototypical example of interleaving in education. Simulations mimic real-life scenarios with patients, requiring students to demonstrate their medical knowledge, bedside manner, physical examination skills, and laboratory and imaging interpretation skills. Ultimately, the interleaving practiced in medical simulations increases practitioners’ diagnostic accuracy as well as their ability to develop patient management plans. Students who practice in an interleaved fashion, rather than blocking between medical knowledge, physical examination skills, etc., ultimately perform better in clinical work.(3)

With these examples in mind, proper implementation of interleaving thus needs a two-pronged approach: (a) implementing changes in the medical curricula and (b) encouraging students to follow these strategies when they study.

Educator’s perspective:

  • Educators should mix up their practice by going back and forth between similar topics. For example, in teaching the subjects of coronary artery histology and acute coronary syndrome, using learning objectives as a guiding point to decide which topics are related, which are not, and which can be compared and contrasted to each other is very helpful, underlining once again how learning objectives can act as a springboard from which many effective learning techniques can be adapted, combined, or optimized.
  • Educators can teach different but related pathologies in the same class. For example, teaching differential diagnoses of anemia, followed by a session on haematological cancers, could help students draw parallels between the different types of anaemia and certain aspects of haematological cancers (pathophysiology, effect on CBC readings, symptoms) and encourage them to identify differences between these two conditions (underlying mechanism, severity of symptoms, survival rate, etc.).
  • Educators could use a case study approach by asking students to interpret laboratory results and discuss other presentations that could explain these results. For example, an atypical CT scan with brain edema could be due to diabetic ketoacidosis, an intracranial bleed secondary to trauma, a tumor, etc. These different conditions can be explained thoroughly or can be discussed interactively within a group.

Key application tips to keep in mind:

  • Educators could use interleaving in combination with spacing by filling spaced out concepts with highly related ones. This way, the materials are both spaced over time and varied.(18)
  • While interleaving emphasizes the importance of varied practice, there is a risk of underemphasizing repeated retrieval practice on the basics—it is not variety vs repetition. Combining different learning strategies will maximize the learning outcomes and long-term retention.(3)
  • Educators should encourage the utilization of other learning strategies, such as spacing and reflection, which can be implemented along with interleaving to augment educational tools
  • Educators need to always evaluate their instructional approaches, take feedback, and adjust accordingly. 
  • Presenting the same medical concept in different ways is not interleaving.(18)
  • It is helpful to investigate published approaches that have been successfully applied in other institutions and that are in line with the BEME approach and to consider the role you play in contributing to the literature and the generation of evidence.

Student’s perspective:

  • Educators can encourage students to mix up their flashcards, question bank exercises, and review topics by grouping things into clusters of topics that, at first glance, may seem difficult to differentiate but whose commonalities will appear through interleaving study. An example is conditions that present similarly.
  • Students need to be reminded that interleaving should be done with the goal of learning in mind. For example, if a student is preparing for an internal medicine examination, he/she can interleave between cases of different IM disciplines (cardiology on day 1, then pulmonology on day 2, etc.). If studying for a test on antimicrobials, he/she would need to interleave the different classes of medication.
  • Educators should explain why this approach is being used and encouraged. Interleaving takes more effort and is perceived to be more difficult and less rewarding. Making sure students have better metacognition will help them.(19)

Using E-learning Platforms to Make the Most of Interleaving

The role of distributed and distance learning has been thrown into the limelight by the COVID-19 pandemic, but its potential benefits have been previously demonstrated and utilized, even for the implementation of evidence-based learning strategies such as interleaving.(20) E-learning platforms that employ such strategies also play a role in minimizing students’ cognitive biases and improving their metacognition. Content-based learning platforms allow students to access content (or teachers to assign content to students), which can be done in a varied manner, essentially interleaving the exposure to content. Platforms with question banks or clinical cases can also be used to mix up practice instead of solving cases with a blocked approach. Learning platforms should leverage strategies such as interleaving and spaced retrieval, as their implementation within the design of the platform itself can facilitate their application and maximize the impact on students’ learning.

Application of interleaved practice in an online learning platform

Application of interleaved practice in an online learning platform


Interleaving is a learning strategy that has been demonstrated to improve learning outcomes and long-term retention of knowledge and skills in medical education and other disciplines. As medical education continues to improve by utilizing evidence-based strategies, interleaving should be integrated into school curricula, teaching methodologies, and recommendations for student self-directed learning. More research is needed in order to generate evidence-based guidance. Otherwise, we run the risk of having educators take educated guesses about how to implement interleaving, which can be inaccurate and detrimental when it comes to learning.(21,22) Research must explore the best approaches and how different contexts can be potentiating or limiting factors, while sharing top practices and innovative approaches. With the current available literature, it is clear that medical educators need to implement interleaving into their practice and incorporate other evidence-based strategies to enhance their students’ learning.


(Please select all that apply)

1. Which of the following statements are true regarding the definition of interleaving?

a. Interleaving is the act of mixing different but related concepts when learning.

b. Interleaving only works if the concepts can be easily differentiated.

c. Interleaving creates stronger neural links and enhances long-term retention. 

d. Interleaving is applicable only for clinical students because they strengthen clinical acumen through patient interactions.

2. Which of the following underlying mechanisms makes interleaving better than blocking for learners?

a. They are able to compare and contrast the different topics and become better at identifying subtle differences.

b. Practicing similar problems causes students to use less cognitive effort.

c. Interleaving adds difficulty that is desirable for learning.

d. Interleaving is a preferred learning strategy among students.

3. What are some examples of ways interleaving can be applied in medical education?

a. In-depth discussion of patient cases and going over different differentials

b. Scheduling of related topics from different disciplines in one study session

c. Teaching pathologies that have similar presentations together

d. Learning about the cardiovascular system through the lens of multiple scientific disciplines

4. What are some key possibilities in the application of interleaving in distance and distributed learning that you feel can be applied in your school?

Correct answers: (1) a, c. (2) a, b, c. (3) a, b, c. (4) free response


Adonis Wazir, M.D.
Junior Doctor, Medical Education Consultant, Lecturio

Adonis is a junior doctor from Lebanon who graduated from the University of Balamand. He was a research fellow at the Department of Emergency Medicine at the American University of Beirut Medical Center and has worked with the World Health Organization Regional Office of the Eastern Mediterranean. During his studies, Adonis served as the president of the Lebanese Medical Students’ International Committee (LeMSIC), a national medical student organization in Lebanon, and moved on to serve as the Regional Director of the Eastern Mediterranean Region of the IFMSA*. Among his roles as Regional Director, he focused on medical education advocacy, oversaw collaborations with external partners, and undertook several medical education projects and initiatives around the region. As a Medical Education Consultant at Lecturio, he advises the Lecturio team on how the platform can fit in existing teaching models and benefit students’ learning experience, develops and maintains partnerships with student organizations and universities in the MENA region, and conducts research on learning science and evidence-based strategies.

*IFMSA has been one of the leading global health organizations worldwide since 1951, representing over 1.3 million medical students as members spanning over 123 countries.

Satria Nur Sya’ban, M.D.
Junior Doctor, Indonesia; Medical Education Consultant, Lecturio

Satria Nur Sya’ban is a junior doctor from Indonesia who graduated from Universitas Airlangga. While a student, he served as the president of CIMSA, a national medical student NGO, working on a diverse range of issues that included medical education and curriculum advocacy by medical students. Before graduating, he took two gap years to serve as a Regional Director, and subsequently as Vice-President, of the International Federation of Medical Students’ Associations (IFMSA)*, working on and developing various initiatives to better empower medical student organizations to make a change at the national level. At Lecturio, he serves as a Medical Education Consultant, supporting Lecturio in developing and maintaining partnerships with student organizations and universities in Asia, as well as providing counsel on how Lecturio can fit in existing teaching models and benefit students’ learning experience.

*IFMSA has been one of the leading global health organizations worldwide since 1951, representing over 1.3 million medical students as members spanning over 123 countries.

Peter Horneffer, M.D.
Executive Dean, All American Institute of Medical Sciences in Jamaica; Director of Medical Education, Lecturio

Dr. Horneffer attended Johns Hopkins for medical school and residency and practiced medicine as a cardiac surgeon in Maryland, USA. In mid-career, he was asked to help bring medical education to the underserved in the Pacific area. He accepted the position as Dean of a medical school, based in Independent Samoa, which he led to become the first accredited school in the world to use an entirely online didactic curriculum to educate medical students simultaneously on multiple continents. Today he is helping evolve medical education by serving as Executive Dean for a small, private, government-chartered Jamaican medical school (AAIMS) to improve teaching and train physicians for an underserved part of the country. At Lecturio, he serves as Director of Medical Education Programs, helping shape its innovative learning-science-based offering, which is used by medical students and schools around the world.


  1. Oakley, Barbara, Rogowsky, Beth, Sejnowski, Terrence. Uncommon Sense Teaching. 1st ed. USA: Penguin Random House LLC; 2021.
  2. Bjork RA. Institutional Impediments to Effective Training. Learn Rememb Believing Enhancing Individ Team Perform. 1994;
  3. Brown PC. Make it stick: the science of successful learning. Cambridge, Massachusetts: The Belknap Press of Harvard University Press; 2014. 313 p.
  4. Bjork RA, Bjork EL. Desirable Difficulties in Theory and Practice. J Appl Res Mem Cogn. 2020 Dec;9(4):475–9.
  5. Bjork EL, Bjork RA. Making things hard on yourself, but in a good way: Creating desirable difficulties to enhance learning. In: Psychology and the real world: Essays illustrating fundamental contributions to society. New York,  NY,  US: Worth Publishers; 2011. p. 56–64.
  6. Soderstrom N, Bjork R. Learning Versus Performance: An Integrative Review. Perspect Psychol Sci J Assoc Psychol Sci. 2015 Mar 1;10:176–99.
  7. Rohrer D. Interleaving Helps Students Distinguish among Similar Concepts. Educ Psychol Rev. 2012 Sep 1;24(3):355–67.
  8. Firth J, Rivers I, Boyle J. A systematic review of interleaving as a concept learning strategy. Rev Educ. 2021;9(2):642–84.
  9. Admin IB. Practice Like You Play Isn’t Just for Sports: The Importance of Interleaving in Teaching and Medical Education [Internet]. ICE Blog. 2020 [cited 2021 Oct 7]. Available from:
  10. Kornell N, Bjork RA. Learning Concepts and Categories: Is Spacing the “Enemy of Induction”? Psychol Sci. 2008 Jun 1;19(6):585–92.
  11. Monteiro S, Melvin L, Manolakos J, Patel A, Norman G. Evaluating the effect of instruction and practice schedule on the acquisition of ECG interpretation skills. Perspect Med Educ. 2017 Jul 1;6:1–9.
  12. Slanetz PJ, Naeger DM, Avery LL, Deitte LA. Mixed Practice in Radiology Education—Has the Time Come? J Am Coll Radiol. 2020 Jul 1;17(7):976–8.
  13. Bjork RA, Finley JR, Linn MC, Richland LE. Linking Cognitive Science to Education: Generation and Interleaving Effects. Proc Annu Meet Cogn Sci Soc [Internet]. 2005 [cited 2021 Oct 7];27(27). Available from:
  14. Pani JR, Chariker JH, Naaz F. Computer-based learning: Interleaving whole and sectional representation of neuroanatomy. Anat Sci Educ. 2013;6(1):11–8.
  15. How cognitive psychology changed the face of medical education research | SpringerLink [Internet]. [cited 2021 Oct 7]. Available from:
  16. Kulasegaram K, Min C, Howey E, Neville A, Woods N, Dore K, et al. The mediating effect of context variation in mixed practice for transfer of basic science. Adv Health Sci Educ. 2015 Oct 1;20(4):953–68.
  17. BRUNER JS. The Process of Education, Revised Edition. Harvard University Press; 2009. 128 p.
  18. Agarwal PK, Bain PM. Powerful Teaching: Unleash the Science of Learning [Internet]. 1st ed. Wiley; 2019 [cited 2021 Apr 6]. Available from:
  19. Anthonysamy L. The use of metacognitive strategies for undisrupted online learning: Preparing university students in the age of pandemic. Educ Inf Technol [Internet]. 2021 Apr 20 [cited 2021 Oct 7]; Available from:
  20. Pumilia CA, Lessans S, Harris D. An Evidence-Based Guide for Medical Students: How to Optimize the Use of Expanded-Retrieval Platforms. Cureus [Internet]. 2020 Sep 11 [cited 2021 Jan 23]; Available from:
  21. Bjork R. Being Suspicious of the Sense of Ease and Undeterred by the Sense of Difficulty: Looking Back at Schmidt and Bjork (1992). Perspect Psychol Sci J Assoc Psychol Sci. 2018;
  22. Frontiers | Pre-service and In-service Teachers’ Metacognitive Knowledge of Learning Strategies | Psychology [Internet]. [cited 2021 Oct 7]. Available from: