Unstable Tachyarrhythmia and Rhythm Identification

by Julianna Jung, MD, FACEP

My Notes
  • Required.
Save Cancel
    Learning Material 2
    • PDF
      Emergency Medicine Tachyarrhythmia.pdf
    • PDF
      Download Lecture Overview
    Report mistake

    00:01 Hello.

    00:02 In this lecture we’re gonna talk about common tachyarrhythmias.

    00:06 So what is a tachyarrhythmia? Very simply, to have a tachyarrhythmia, you must be first tachycardic, meaning, your ventricular must rate must be over a hundred.

    00:15 Secondly, you have to be having an arrhythmia, so you have to be in a non-sinus cardiac rhythm.

    00:21 Now, the term tachyarrhythmias incorporates many different cardiac rhythms and they might be stable or unstable.

    00:28 And we’re gonna talk about the differences in how you manage the two.

    00:32 So unstable tachyarrhythmias, are situations in which a tachyarrhythmia is present and the patient has some sign of hemodynamic instability or hypoperfusion So this is gonna include hypotension or shock, altered mental status or loss of consciousness, ischemic chest pain or dyspnea or acute decompensated heart failure.

    00:58 Basically, any situation in which lack of systemic perfusion is causing end organ damage.

    01:07 The treatment of all tachyarrhythmias is the same when the patient is unstable.

    01:14 Unstable tachyarrhythmias are life threatening events and you have to assume that the patient is in danger of cardiac arrest.

    01:20 So we’re gonna do the same thing for all of these patients.

    01:23 We’re gonna give them all oxygen.

    01:25 We’re gonna monitor them.

    01:26 We’re gonna establish IV access and do frequent blood pressure checks.

    01:29 We’re gonna address our ABCs.

    01:31 So we’re gonna manage the airway if we need to.

    01:34 And provide any support that’s necessary for respiratory distress.

    01:39 But the most important thing we’re gonna do is perform emergent synchronized cardioversion.

    01:44 If a patient is having an unstable tachyarrhythmia the most important thing you can do for that patient is to terminate that rhythm and get back into a normal perfusing rhythm.

    01:56 So electricity is gonna be the answer for all unstable tachyarrhythmias.

    02:01 Now, if possible, we wanna provide sedation or analgesia for our patient before performing cardioversion.

    02:07 'Cause this you can imagine 200 joules to the chest is not really comfortable.

    02:12 So if you have time and the patients' condition permits it, it’s definitely better to provide sedation, but if the patient is too unstable for that, terminating the rhythm is the most important thing you can do.

    02:23 So again, cardioversion is indicated for all unstable tachyarrhythmias regarding of what the underlying rhythm is.

    02:31 If the patient’s unstable and they’re in a tachyarrhythmia, you need to shock them.

    02:37 Once there is return of spontaneous circulation you should go over the Immediate Post-Cardiac Arrest Care Algorithm.

    02:45 It starts with return of spontaneous circulation.

    02:49 Following this you have to optimize ventilation and oxygenation. Then you treat hypotension and prevent a S B P below 90 millimeters Hg.

    03:01 Now let’s see if the patient follows commands? If no, induce hypothermia. If yes - or if no and there is an hypothermic condition - go to cardiac catheterization lab. Then you reached the end of the immediate post-cardiac arrest algorithm.

    03:19 So initiate definitive treatment and advanced critical care.

    03:24 So it’s really important when you’re confronted with a tachyarrhythmia to identify specifically what cardiac rhythm your patient is in.

    03:33 The reason for that is that you’re gonna manage different rhythms in different ways.

    03:37 So you have to understand what rhythm you’re dealing with in order to provide the right treatment for the patient.

    03:42 The approach to rhythm identification is always the same.

    03:45 Whenever you’re looking at a cardiac rhythm, the first question you’re gonna ask yourself is, is this a fast rhythm or a slow rhythm? Now, if it’s a slow rhythm, you’re dealing with sinus bradycardia or maybe a bradydysrhythmia In which case, we’re gonna cover all of that in another lecture.

    04:01 So don’t worry about that right now.

    04:02 If it’s a fast rhythm which is what we’re talking about in this lecture, the two possibilities are sinus tachycardia or a tachydysrythmia.

    04:12 Now, if it's sinus tachycardia, we’re not gonna treat that as a rhythm disturbance.

    04:16 Our goal is gonna be to identify the underlying cause and address that.

    04:21 But if the patient is having a dysrhythmia they're in a non-sinus rhythm, then we need to identify specifically what rhythm they're in.

    04:30 The next question we’re gonna ask ourselves in order to do that is, is it a wide complex rhythm or a narrow complex rhythm? Now, when I talk about wide or narrow,I’m talking about the QRS complex and just as a reminder from basic cardiology, a wide complex rhythm is any situation in which the QRS complex is more than 3 millimeters wide or a 120 milliseconds on the ECG.

    04:55 So if it’s a wide complex rhythm, that suggests ventricular origin of the rhythm.

    05:01 It has to be coming from some place below the AV node, typically within the ventricles.

    05:07 The other possibility is that it could be a supraventricular rhythm with abnormal conduction through the heart.

    05:15 And we’ll talk a little bit more about that shortly.

    05:17 The possibilities for wide complex rhythms are either ventricular tachycardia or supraventricular tachycardia with aberrant conduction.

    05:28 Now, if we’re dealing with a narrow complex rhythm that tells us that the origin of the rhythm is super ventricular.

    05:36 It’s above the level of the ventricles, because in order to produce a narrow complex rhythm the heart has to use the fast conduction pathways which allow rapid depolarization of the heart producing a narrow QRS complex.

    05:50 The next question if we identify a supraventricular rhythm is is this a regular rhythm or is it an irregular rhythm? If it’s irregular, we’re gonna be thinking about things like atrial fibrillation or atrial flutter with variable conduction.

    06:08 If it’s a regular rhythm, we’re gonna ask ourselves whether or not there are P waves present, if there are, we’re back to sinus tachycardia and again, we’re not dealing with the primary rhythm disturbance.

    06:18 But if there are no P waves present, we’re dealing with the paroxysmal supraventricular tachycardia and we’re gonna talk a lot more about that in slides to come.

    06:29 Sinus rhythm or tachyarrhythmia,if you’re looking at a fast rhythm.

    06:35 Next question, if you have a tachyarrhythmia is is it wide or is it narrow? If it’s wide, we’re dealing with a ventricular origin.

    06:44 So again, wide complex rhythms are those that have QRS duration of longer than a 120 milliseconds or 3 millimeters.

    06:53 If the QRS rate is greater than 100, you have a tachycardia.

    06:58 So wide complex, wide QRS' plus fast heart rate equals wide complex tachycardia.

    07:06 So the path of physiology of wide complex tachycardia is pretty easy to understand.

    07:11 Narrow QRS complexes originate above the level of the AV node.

    07:17 And these narrow complex rhythms use the His-Purkinje system, which as you recall is a normal conduction system in the heart that allows very rapid depolarization of the entire myocardium producing a narrow QRS complex.

    07:33 Simply put, the impulses move quickly through this system, the depolarization of the heart is efficient, it happens quickly and that gives you a nice, sharp, narrow QRS complex.

    07:44 By contrast, when the QRS complex is wide, the rhythm could be originating either above or below the AV node.

    07:53 In both cases however, the normal conduction pathways, the His-Purkinje system is not being used.

    08:00 The electrical impulses are sort of travelling from one myocyte to the next in a very inefficient manner.

    08:09 This takes a long time to depolarize the entire heart.

    08:11 It’s a slow process.

    08:13 Meaning, that the QRS complex takes longer to be completed.

    08:18 So it appears as wide on the ECG.

    08:21 The vast majority of wide complex tachycardias are ventricular tachycardia.

    08:26 So 90% of patients who you see with wide complex rhythms are gonna be in V-tach.

    08:32 There is a small percentage of patients though about 10% who have super ventricular rhythms with abnormal or aberrant conduction.

    08:41 Now, an easy way to understand this is is to think about bundle branch blocks.

    08:45 If you have a baseline bundle branch block, you’re gonna have a wide QRS complex even when you’re just hanging out in normal sinus rhythm.

    08:55 Clearly, if you go into rapid atrial fibrillation or sinus tachycardia, your QRS complexes are still gonna be wide, right? Now, that’s a supraventricular rhythm with abnormal conduction because of your bundle branch block.

    09:08 So it’s a sort of an easy way to think about it, although there are definitely other situations which we’re gonna cover where you can see wide complex supraventricular rhythms.

    About the Lecture

    The lecture Unstable Tachyarrhythmia and Rhythm Identification by Julianna Jung, MD, FACEP is from the course Cardiovascular Emergencies and Shock. It contains the following chapters:

    • Tachyarrhythmias
    • How to Approach to Rhythm Identification

    Included Quiz Questions

    1. Atrial rate > 100 bpm
    2. Ventricular rate > 100 bpm
    3. Presence of arrhythmia
    4. Includes many different cardiac rhythms
    5. May be stable or unstable
    1. Emergent synchronized cardioversion
    2. Oxygen supplementation
    3. Airway control for respiratory distress
    4. Sedation
    5. Placement of IV access
    1. Ventricular tachycardia
    2. Sinus tachycardia
    3. Atrial fibrillation
    4. Atrial flutter
    5. Supraventricular tachycardia
    1. QRS duration > 120 ms
    2. QRS duration > 90 ms
    3. QRS width of 2 mm
    4. QRS width of 1 mm
    5. QRS rate of > 100

    Author of lecture Unstable Tachyarrhythmia and Rhythm Identification

     Julianna Jung, MD, FACEP

    Julianna Jung, MD, FACEP

    Customer reviews

    5,0 of 5 stars
    5 Stars
    4 Stars
    3 Stars
    2 Stars
    1  Star